greenhouse/detect.py

155 lines
5.9 KiB
Python
Raw Normal View History

2018-08-26 10:51:39 +02:00
import argparse
import time
2019-02-12 16:58:07 +01:00
from sys import platform
2018-08-26 10:51:39 +02:00
from models import *
from utils.datasets import *
from utils.utils import *
2019-01-08 19:37:23 +01:00
2019-07-15 17:00:04 +02:00
def detect(cfg,
2019-07-20 15:10:31 +02:00
data,
2019-07-15 17:00:04 +02:00
weights,
images='data/samples', # input folder
output='output', # output folder
fourcc='mp4v', # video codec
img_size=416,
conf_thres=0.5,
nms_thres=0.5,
save_txt=False,
2019-08-01 18:20:47 +02:00
save_images=True):
2019-07-15 17:00:04 +02:00
# Initialize
2019-08-06 17:44:09 +02:00
device = torch_utils.select_device(force_cpu=ONNX_EXPORT)
2019-06-24 14:19:20 +02:00
torch.backends.cudnn.benchmark = False # set False for reproducible results
2019-02-17 17:30:16 +01:00
if os.path.exists(output):
shutil.rmtree(output) # delete output folder
2019-02-12 17:29:13 +01:00
os.makedirs(output) # make new output folder
2018-08-26 10:51:39 +02:00
2019-02-11 12:32:54 +01:00
# Initialize model
2019-04-22 16:21:21 +02:00
if ONNX_EXPORT:
2019-06-15 14:05:19 +02:00
s = (320, 192) # (320, 192) or (416, 256) or (608, 352) onnx model image size (height, width)
2019-04-22 16:21:21 +02:00
model = Darknet(cfg, s)
else:
model = Darknet(cfg, img_size)
2018-08-26 10:51:39 +02:00
2019-02-11 12:32:54 +01:00
# Load weights
2019-02-08 22:43:05 +01:00
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
2018-12-06 13:01:49 +01:00
else: # darknet format
2019-03-19 10:38:32 +02:00
_ = load_darknet_weights(model, weights)
2018-08-26 10:51:39 +02:00
2019-04-20 22:46:23 +02:00
# Fuse Conv2d + BatchNorm2d layers
2019-07-30 12:39:17 +02:00
# model.fuse()
2019-04-19 20:41:18 +02:00
2019-04-22 16:21:21 +02:00
# Eval mode
2018-08-26 10:51:39 +02:00
model.to(device).eval()
2019-07-30 12:39:17 +02:00
# Export mode
2019-04-22 16:21:21 +02:00
if ONNX_EXPORT:
img = torch.zeros((1, 3, s[0], s[1]))
torch.onnx.export(model, img, 'weights/export.onnx', verbose=True)
return
2019-08-01 00:08:28 +02:00
# Half precision
2019-08-11 19:16:54 +02:00
opt.half = opt.half and device.type != 'cpu' # half precision only supported on CUDA
2019-08-01 00:08:28 +02:00
if opt.half:
model.half()
2018-08-26 10:51:39 +02:00
# Set Dataloader
2019-04-02 13:43:18 +02:00
vid_path, vid_writer = None, None
2019-08-01 18:20:47 +02:00
if opt.webcam:
2019-02-11 13:45:04 +01:00
save_images = False
2019-08-01 00:08:28 +02:00
dataloader = LoadWebcam(img_size=img_size, half=opt.half)
2019-02-11 13:45:04 +01:00
else:
2019-08-01 00:08:28 +02:00
dataloader = LoadImages(images, img_size=img_size, half=opt.half)
2019-02-08 22:43:05 +01:00
2019-02-10 21:41:57 +01:00
# Get classes and colors
2019-07-20 15:10:31 +02:00
classes = load_classes(parse_data_cfg(data)['names'])
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))]
2018-08-26 10:51:39 +02:00
2019-08-01 00:08:28 +02:00
# Run inference
2019-08-01 02:21:40 +02:00
t0 = time.time()
2019-04-02 13:43:18 +02:00
for i, (path, img, im0, vid_cap) in enumerate(dataloader):
2019-02-08 22:43:05 +01:00
t = time.time()
save_path = str(Path(output) / Path(path).name)
2018-08-26 10:51:39 +02:00
2019-04-21 20:30:11 +02:00
# Get detections
img = torch.from_numpy(img).unsqueeze(0).to(device)
2019-04-05 15:34:42 +02:00
pred, _ = model(img)
2019-08-01 02:28:11 +02:00
det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0]
2019-02-08 22:43:05 +01:00
2019-04-22 14:59:39 +02:00
if det is not None and len(det) > 0:
2019-02-10 21:06:22 +01:00
# Rescale boxes from 416 to true image size
2019-07-15 17:00:04 +02:00
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
2019-02-08 22:43:05 +01:00
2019-02-11 13:45:04 +01:00
# Print results to screen
2019-04-29 17:57:51 +02:00
print('%gx%g ' % img.shape[2:], end='') # print image size
2019-04-22 14:59:39 +02:00
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum()
2019-02-11 18:15:51 +01:00
print('%g %ss' % (n, classes[int(c)]), end=', ')
2019-02-08 22:43:05 +01:00
2019-02-11 13:45:04 +01:00
# Draw bounding boxes and labels of detections
2019-04-22 14:59:39 +02:00
for *xyxy, conf, cls_conf, cls in det:
2019-02-10 21:06:22 +01:00
if save_txt: # Write to file
2019-02-11 12:26:30 +01:00
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
2019-02-08 22:43:05 +01:00
2019-02-11 13:45:04 +01:00
# Add bbox to the image
label = '%s %.2f' % (classes[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
2018-08-26 10:51:39 +02:00
print('Done. (%.3fs)' % (time.time() - t))
2018-08-26 10:51:39 +02:00
2019-08-01 18:20:47 +02:00
if opt.webcam: # Show live webcam
2019-02-21 23:23:03 +01:00
cv2.imshow(weights, im0)
2019-02-11 13:45:04 +01:00
2019-04-28 23:16:21 +02:00
if save_images: # Save image with detections
if dataloader.mode == 'images':
cv2.imwrite(save_path, im0)
else:
2019-04-02 13:43:18 +02:00
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
2019-04-28 23:16:21 +02:00
fps = vid_cap.get(cv2.CAP_PROP_FPS)
2019-04-02 13:43:18 +02:00
width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))
2019-04-02 13:43:18 +02:00
vid_writer.write(im0)
2019-04-26 12:16:33 +02:00
if save_images:
2019-04-26 12:14:35 +02:00
print('Results saved to %s' % os.getcwd() + os.sep + output)
2019-04-26 12:16:33 +02:00
if platform == 'darwin': # macos
os.system('open ' + output + ' ' + save_path)
2018-11-21 19:24:00 +01:00
2019-08-01 02:21:40 +02:00
print('Done. (%.3fs)' % (time.time() - t0))
2018-08-26 10:51:39 +02:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
2019-05-25 14:51:01 +02:00
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
2019-07-20 15:04:41 +02:00
parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path')
2019-05-25 14:51:01 +02:00
parser.add_argument('--weights', type=str, default='weights/yolov3-spp.weights', help='path to weights file')
2019-02-08 23:28:00 +01:00
parser.add_argument('--images', type=str, default='data/samples', help='path to images')
2019-04-29 17:49:09 +02:00
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
2019-08-05 13:57:18 +02:00
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
2019-07-01 14:48:44 +02:00
parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')
parser.add_argument('--output', type=str, default='output', help='specifies the output path for images and videos')
2019-08-01 00:08:28 +02:00
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
2019-08-01 18:20:47 +02:00
parser.add_argument('--webcam', action='store_true', help='use webcam')
opt = parser.parse_args()
print(opt)
2019-02-10 21:06:22 +01:00
with torch.no_grad():
2019-07-01 14:48:44 +02:00
detect(opt.cfg,
2019-07-20 15:10:31 +02:00
opt.data,
2019-07-01 14:48:44 +02:00
opt.weights,
images=opt.images,
img_size=opt.img_size,
conf_thres=opt.conf_thres,
nms_thres=opt.nms_thres,
fourcc=opt.fourcc,
output=opt.output)