greenhouse/test.py

350 lines
17 KiB
Python
Raw Normal View History

2018-08-26 10:51:39 +02:00
import argparse
2019-02-26 02:53:11 +01:00
import json
import os
from pathlib import Path
2020-11-30 16:47:28 +01:00
from threading import Thread
2018-10-10 17:07:21 +02:00
import numpy as np
import torch
import yaml
from tqdm import tqdm
2019-03-21 22:41:12 +02:00
from models.experimental import attempt_load
from utils.datasets import create_dataloader
2021-01-12 23:05:32 -08:00
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils.metrics import ap_per_class, ConfusionMatrix
from utils.plots import plot_images, output_to_target, plot_study_txt
from utils.torch_utils import select_device, time_synchronized
2018-08-26 10:51:39 +02:00
@torch.no_grad()
def test(data,
2019-07-15 17:00:04 +02:00
weights=None,
batch_size=32,
imgsz=640,
2019-07-15 17:00:04 +02:00
conf_thres=0.001,
iou_thres=0.6, # for NMS
2019-07-15 17:00:04 +02:00
save_json=False,
2020-01-17 17:58:37 -08:00
single_cls=False,
2020-03-26 11:28:46 -07:00
augment=False,
verbose=False,
2019-12-04 23:02:32 -08:00
model=None,
2020-05-21 14:40:45 -07:00
dataloader=None,
save_dir=Path(''), # for saving images
save_txt=False, # for auto-labelling
save_hybrid=False, # for hybrid auto-labelling
save_conf=False, # save auto-label confidences
plots=True,
wandb_logger=None,
compute_loss=None,
half_precision=True,
is_coco=False,
opt=None):
2019-07-15 17:00:04 +02:00
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
2019-04-02 13:43:18 +02:00
device = next(model.parameters()).device # get model device
else: # called directly
set_logging()
device = select_device(opt.device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check img_size
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
# Half
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
if half:
model.half()
# Configure
model.eval()
if isinstance(data, str):
is_coco = data.endswith('coco.yaml')
with open(data) as f:
data = yaml.safe_load(f)
check_dataset(data) # check
nc = 1 if single_cls else int(data['nc']) # number of classes
2019-12-27 10:31:12 -08:00
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
2018-11-14 15:14:41 +00:00
# Logging
log_imgs = 0
if wandb_logger and wandb_logger.wandb:
log_imgs = min(wandb_logger.log_imgs, 100)
2019-03-21 22:41:12 +02:00
# Dataloader
if not training:
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
prefix=colorstr(f'{task}: '))[0]
2018-11-14 15:14:41 +00:00
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
2019-02-26 14:57:28 +01:00
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
2020-03-04 12:17:37 -08:00
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
nb, _, height, width = img.shape # batch size, channels, height, width
# Run model
t = time_synchronized()
out, train_out = model(img, augment=augment) # inference and training outputs
t0 += time_synchronized() - t
2019-12-20 09:07:25 -08:00
# Compute loss
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
2018-11-14 15:14:41 +00:00
# Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t = time_synchronized()
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
t1 += time_synchronized() - t
2019-04-05 15:34:42 +02:00
# Statistics per image
for si, pred in enumerate(out):
labels = targets[targets[:, 0] == si, 1:]
2019-04-10 16:17:08 +02:00
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
path = Path(paths[si])
2019-02-23 23:50:23 +01:00
seen += 1
2018-11-14 15:14:41 +00:00
if len(pred) == 0:
2019-04-10 16:17:08 +02:00
if nl:
2020-01-08 18:48:41 -08:00
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
2018-11-14 15:14:41 +00:00
continue
# Predictions
if single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
2019-06-01 18:29:14 +02:00
# Append to text file
if save_txt:
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# W&B logging - Media Panel Plots
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": "%s %.3f" % (names[cls], conf),
"scores": {"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
2019-12-24 12:42:22 -08:00
2019-04-05 15:34:42 +02:00
# Append to pycocotools JSON dictionary
if save_json:
2019-02-26 14:57:28 +01:00
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
2019-02-26 14:57:28 +01:00
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
2019-07-15 17:00:04 +02:00
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
2019-02-26 02:53:11 +01:00
2019-04-10 16:17:08 +02:00
# Assign all predictions as incorrect
2020-03-04 12:17:37 -08:00
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
2019-04-10 16:17:08 +02:00
if nl:
2019-12-22 16:05:43 -08:00
detected = [] # target indices
2019-04-26 14:14:28 +02:00
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
if plots:
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
2018-11-14 15:14:41 +00:00
2019-12-22 16:05:43 -08:00
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # target indices
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # prediction indices
2019-12-22 16:05:43 -08:00
# Search for detections
2020-03-04 01:47:31 -08:00
if pi.shape[0]:
2019-12-22 16:05:43 -08:00
# Prediction to target ious
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
2019-12-22 16:05:43 -08:00
# Append detections
detected_set = set()
for j in (ious > iouv[0]).nonzero(as_tuple=False):
2019-12-22 16:05:43 -08:00
d = ti[i[j]] # detected target
if d.item() not in detected_set:
detected_set.add(d.item())
2019-12-22 16:05:43 -08:00
detected.append(d)
2020-03-04 01:47:31 -08:00
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
2019-12-22 16:05:43 -08:00
if len(detected) == nl: # all targets already located in image
break
2018-11-14 15:14:41 +00:00
2019-04-10 16:17:08 +02:00
# Append statistics (correct, conf, pcls, tcls)
2020-03-04 01:47:31 -08:00
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
2018-11-14 15:14:41 +00:00
# Plot images
if plots and batch_i < 3:
2020-11-30 16:47:28 +01:00
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
2019-04-05 15:34:42 +02:00
# Compute statistics
2020-01-11 13:12:58 -08:00
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
2019-07-16 23:14:10 +02:00
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
2018-11-14 15:14:41 +00:00
2019-04-05 15:34:42 +02:00
# Print results
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
2018-11-14 15:14:41 +00:00
2019-04-05 15:34:42 +02:00
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
2019-04-05 15:34:42 +02:00
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
2018-11-14 15:14:41 +00:00
2020-03-08 12:05:42 -07:00
# Print speeds
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
if not training:
2020-03-08 12:05:42 -07:00
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
2020-11-30 16:47:28 +01:00
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
if wandb_logger and wandb_logger.wandb:
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
wandb_logger.log({"Validation": val_batches})
if wandb_images:
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
2020-11-30 16:47:28 +01:00
2019-02-26 02:53:11 +01:00
# Save JSON
if save_json and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
2019-08-28 16:15:10 +02:00
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
print(f'pycocotools unable to run: {e}')
2019-02-26 02:53:11 +01:00
2019-04-05 15:34:42 +02:00
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
2019-05-13 14:41:17 +02:00
maps = np.zeros(nc) + map
2019-05-10 14:15:09 +02:00
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
2018-11-14 15:14:41 +00:00
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default='yolov3.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
2020-01-17 19:42:04 -08:00
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--project', default='runs/test', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.save_json |= opt.data.endswith('coco.yaml')
2020-06-15 12:25:48 -07:00
opt.data = check_file(opt.data) # check file
2019-05-03 18:14:16 +02:00
print(opt)
check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
if opt.task in ('train', 'val', 'test'): # run normally
test(opt.data,
2019-12-20 09:08:57 -08:00
opt.weights,
opt.batch_size,
opt.img_size,
opt.conf_thres,
2019-12-26 12:30:51 -08:00
opt.iou_thres,
2020-01-17 17:52:28 -08:00
opt.save_json,
2020-03-26 11:28:46 -07:00
opt.single_cls,
opt.augment,
opt.verbose,
save_txt=opt.save_txt | opt.save_hybrid,
save_hybrid=opt.save_hybrid,
save_conf=opt.save_conf,
opt=opt
)
elif opt.task == 'speed': # speed benchmarks
for w in opt.weights:
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, opt=opt)
elif opt.task == 'study': # run over a range of settings and save/plot
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov3.pt yolov3-spp.pt yolov3-tiny.pt
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
for w in opt.weights:
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
y = [] # y axis
for i in x: # img-size
print(f'\nRunning {f} point {i}...')
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
plots=False, opt=opt)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_study_txt(x=x) # plot