greenhouse/train.py

575 lines
29 KiB
Python
Raw Normal View History

2018-08-26 10:51:39 +02:00
import argparse
import logging
import os
import random
import time
from pathlib import Path
2020-11-30 16:47:28 +01:00
from threading import Thread
from warnings import warn
2020-11-30 16:47:28 +01:00
import math
import numpy as np
2019-07-25 13:19:26 +02:00
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
2019-04-17 15:52:51 +02:00
import torch.optim as optim
2019-05-30 19:02:55 +02:00
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
2020-04-20 09:57:15 -07:00
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
2019-03-21 14:48:40 +02:00
2019-06-24 13:43:17 +02:00
import test # import test.py to get mAP after each epoch
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
print_mutation, set_logging
from utils.google_utils import attempt_download
from utils.loss import compute_loss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
logger = logging.getLogger(__name__)
try:
import wandb
except ImportError:
wandb = None
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
def train(hyp, opt, device, tb_writer=None, wandb=None):
logger.info(f'Hyperparameters {hyp}')
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
# Directories
wdir = save_dir / 'weights'
wdir.mkdir(parents=True, exist_ok=True) # make dir
last = wdir / 'last.pt'
best = wdir / 'best.pt'
results_file = save_dir / 'results.txt'
# Save run settings
with open(save_dir / 'hyp.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)
# Configure
plots = not opt.evolve # create plots
cuda = device.type != 'cpu'
init_seeds(2 + rank)
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
with torch_distributed_zero_first(rank):
check_dataset(data_dict) # check
2019-04-27 17:57:07 +02:00
train_path = data_dict['train']
test_path = data_dict['val']
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
# Model
pretrained = weights.endswith('.pt')
if pretrained:
with torch_distributed_zero_first(rank):
attempt_download(weights) # download if not found locally
ckpt = torch.load(weights, map_location=device) # load checkpoint
if hyp.get('anchors'):
ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(state_dict, strict=False) # load
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
else:
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
# Freeze
freeze = [] # parameter names to freeze (full or partial)
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
if any(x in k for x in freeze):
print('freezing %s' % k)
v.requires_grad = False
2018-08-26 10:51:39 +02:00
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
2020-01-17 10:55:30 -08:00
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d):
pg0.append(v.weight) # no decay
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
2019-08-26 14:47:36 +02:00
2019-09-11 14:25:48 +02:00
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
2019-09-11 14:25:48 +02:00
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
2019-08-26 14:47:36 +02:00
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
2020-01-17 11:17:52 -08:00
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
2020-01-17 10:55:30 -08:00
del pg0, pg1, pg2
2018-08-26 10:51:39 +02:00
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# plot_lr_scheduler(optimizer, scheduler, epochs)
# Logging
if wandb and wandb.run is None:
opt.hyp = hyp # add hyperparameters
wandb_run = wandb.init(config=opt, resume="allow",
project='YOLOv3' if opt.project == 'runs/train' else Path(opt.project).stem,
name=save_dir.stem,
id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
2020-11-30 16:47:28 +01:00
loggers = {'wandb': wandb} # loggers dict
# Resume
start_epoch, best_fitness = 0, 0.0
if pretrained:
# Optimizer
2020-06-30 16:19:56 -07:00
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
2019-07-08 18:00:19 +02:00
# Results
2020-06-30 16:19:56 -07:00
if ckpt.get('training_results') is not None:
2019-09-18 02:25:09 +02:00
with open(results_file, 'w') as file:
2020-06-30 16:19:56 -07:00
file.write(ckpt['training_results']) # write results.txt
2019-07-08 18:00:19 +02:00
# Epochs
2020-06-30 16:19:56 -07:00
start_epoch = ckpt['epoch'] + 1
if opt.resume:
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
2020-06-30 16:19:56 -07:00
if epochs < start_epoch:
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
2020-06-30 16:19:56 -07:00
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt, state_dict
2018-10-30 15:18:52 +01:00
# Image sizes
gs = int(max(model.stride)) # grid size (max stride)
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
# DP mode
if cuda and rank == -1 and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
2018-10-30 15:18:52 +01:00
# SyncBatchNorm
if opt.sync_bn and cuda and rank != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
logger.info('Using SyncBatchNorm()')
2020-02-27 13:40:14 -08:00
# EMA
ema = ModelEMA(model) if rank in [-1, 0] else None
# DDP mode
if cuda and rank != -1:
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
# Trainloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
world_size=opt.world_size, workers=opt.workers,
image_weights=opt.image_weights)
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
nb = len(dataloader) # number of batches
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
# Process 0
if rank in [-1, 0]:
ema.updates = start_epoch * nb // accumulate # set EMA updates
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader
if not opt.resume:
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
if plots:
2020-11-30 16:47:28 +01:00
Thread(target=plot_labels, args=(labels, save_dir, loggers), daemon=True).start()
if tb_writer:
tb_writer.add_histogram('classes', c, 0)
# Anchors
if not opt.noautoanchor:
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
2019-12-04 23:02:32 -08:00
2020-03-13 20:12:54 -07:00
# Model parameters
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
2019-08-05 16:59:32 +02:00
model.nc = nc # attach number of classes to model
2019-04-17 15:52:51 +02:00
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
2019-11-20 13:36:15 -08:00
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
model.names = names
2020-03-13 20:12:54 -07:00
# Start training
2019-07-16 17:56:39 +02:00
t0 = time.time()
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=cuda)
logger.info('Image sizes %g train, %g test\n'
'Using %g dataloader workers\nLogging results to %s\n'
'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
2020-02-24 12:21:47 -08:00
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
2018-09-20 18:03:19 +02:00
2019-07-30 17:51:19 +02:00
# Update image weights (optional)
if opt.image_weights:
# Generate indices
if rank in [-1, 0]:
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
# Broadcast if DDP
if rank != -1:
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
dist.broadcast(indices, 0)
if rank != 0:
dataset.indices = indices.cpu().numpy()
# Update mosaic border
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
mloss = torch.zeros(4, device=device) # mean losses
if rank != -1:
dataloader.sampler.set_epoch(epoch)
pbar = enumerate(dataloader)
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
if rank in [-1, 0]:
pbar = tqdm(pbar, total=nb) # progress bar
optimizer.zero_grad()
2019-08-23 00:36:48 +02:00
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
2019-08-23 13:39:43 +02:00
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
2020-04-02 14:08:21 -07:00
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
2020-03-30 19:27:42 -07:00
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
2020-05-16 22:25:21 -07:00
# Multi-scale
2020-02-05 20:35:54 -08:00
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
2020-02-05 20:35:54 -08:00
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
2020-02-05 20:35:54 -08:00
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
2020-04-27 15:22:36 -07:00
# Forward
with amp.autocast(enabled=cuda):
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
if rank != -1:
loss *= opt.world_size # gradient averaged between devices in DDP mode
2019-03-07 17:16:38 +01:00
2020-04-27 15:22:36 -07:00
# Backward
scaler.scale(loss).backward()
2018-10-09 19:22:33 +02:00
2020-04-27 15:22:36 -07:00
# Optimize
2019-08-23 13:31:32 +02:00
if ni % accumulate == 0:
scaler.step(optimizer) # optimizer.step
scaler.update()
2018-12-16 15:16:19 +01:00
optimizer.zero_grad()
if ema:
ema.update(model)
2018-09-19 04:21:46 +02:00
2020-04-27 15:22:36 -07:00
# Print
if rank in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
pbar.set_description(s)
# Plot
if plots and ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
2020-11-30 16:47:28 +01:00
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
# if tb_writer:
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(model, imgs) # add model to tensorboard
elif plots and ni == 3 and wandb:
wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})
2020-03-30 19:27:42 -07:00
2019-08-29 14:29:07 +02:00
# end batch ------------------------------------------------------------------------------------------------
# end epoch ----------------------------------------------------------------------------------------------------
2019-08-29 14:29:07 +02:00
# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
2020-02-24 12:44:22 -08:00
scheduler.step()
# DDP process 0 or single-GPU
if rank in [-1, 0]:
# mAP
if ema:
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
final_epoch = epoch + 1 == epochs
if not opt.notest or final_epoch: # Calculate mAP
results, maps, times = test.test(opt.data,
batch_size=total_batch_size,
imgsz=imgsz_test,
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
plots=plots and final_epoch,
log_imgs=opt.log_imgs if wandb else 0)
# Write
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
if len(opt.name) and opt.bucket:
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
# Log
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
if tb_writer:
tb_writer.add_scalar(tag, x, epoch) # tensorboard
if wandb:
wandb.log({tag: x}) # W&B
# Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if fi > best_fitness:
best_fitness = fi
# Save model
save = (not opt.nosave) or (final_epoch and not opt.evolve)
if save:
with open(results_file, 'r') as f: # create checkpoint
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': ema.ema,
'optimizer': None if final_epoch else optimizer.state_dict(),
'wandb_id': wandb_run.id if wandb else None}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
del ckpt
2019-08-29 14:29:07 +02:00
# end epoch ----------------------------------------------------------------------------------------------------
2019-09-09 22:42:38 +02:00
# end training
2020-04-29 12:00:30 -07:00
if rank in [-1, 0]:
# Strip optimizers
n = opt.name if opt.name.isnumeric() else ''
fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
if f1.exists():
os.rename(f1, f2) # rename
if str(f2).endswith('.pt'): # is *.pt
strip_optimizer(f2) # strip optimizer
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
# Finish
if plots:
plot_results(save_dir=save_dir) # save as results.png
if wandb:
files = ['results.png', 'precision_recall_curve.png', 'confusion_matrix.png']
wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
if (save_dir / f).exists()]})
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
else:
dist.destroy_process_group()
2019-11-17 18:48:50 -08:00
wandb.run.finish() if wandb and wandb.run else None
2019-07-24 00:22:07 +02:00
torch.cuda.empty_cache()
2019-04-17 16:15:08 +02:00
return results
2018-08-26 10:51:39 +02:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov3.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
2019-07-08 15:02:20 +02:00
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
2019-06-24 14:46:00 +02:00
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
2019-04-17 17:27:51 +02:00
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
2019-07-01 17:17:29 +02:00
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
2019-07-08 18:32:31 +02:00
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
2019-08-07 16:45:13 +02:00
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
2020-01-17 17:52:28 -08:00
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
# Set DDP variables
opt.total_batch_size = opt.batch_size
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
set_logging(opt.global_rank)
if opt.global_rank in [-1, 0]:
check_git_status()
# Resume
if opt.resume: # resume an interrupted run
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
opt.cfg, opt.weights, opt.resume = '', ckpt, True
logger.info('Resuming training from %s' % ckpt)
else:
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
opt.name = 'evolve' if opt.evolve else opt.name
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
# DDP mode
device = select_device(opt.device, batch_size=opt.batch_size)
if opt.local_rank != -1:
assert torch.cuda.device_count() > opt.local_rank
torch.cuda.set_device(opt.local_rank)
device = torch.device('cuda', opt.local_rank)
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
opt.batch_size = opt.total_batch_size // opt.world_size
# Hyperparameters
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
if 'box' not in hyp:
warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
(opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
hyp['box'] = hyp.pop('giou')
# Train
logger.info(opt)
if not opt.evolve:
tb_writer = None # init loggers
if opt.global_rank in [-1, 0]:
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
train(hyp, opt, device, tb_writer, wandb)
# Evolve hyperparameters (optional)
else:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
'box': (1, 0.02, 0.2), # box loss gain
'cls': (1, 0.2, 4.0), # cls loss gain
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
'iou_t': (0, 0.1, 0.7), # IoU training threshold
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
2020-01-30 14:32:10 -08:00
opt.notest, opt.nosave = True, True # only test/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
2019-07-24 19:02:24 +02:00
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
2019-04-17 17:51:39 +02:00
for _ in range(300): # generations to evolve
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
2019-09-18 13:23:37 +02:00
# Select parent(s)
2020-01-12 15:56:42 -08:00
parent = 'single' # parent selection method: 'single' or 'weighted'
2020-01-22 11:06:52 -08:00
x = np.loadtxt('evolve.txt', ndmin=2)
2020-01-29 14:26:37 -08:00
n = min(5, len(x)) # number of previous results to consider
2020-01-22 11:06:52 -08:00
x = x[np.argsort(-fitness(x))][:n] # top n mutations
2020-01-22 18:17:08 -08:00
w = fitness(x) - fitness(x).min() # weights
2019-09-20 20:31:37 +02:00
if parent == 'single' or len(x) == 1:
2020-01-22 18:17:08 -08:00
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
2020-01-22 11:08:03 -08:00
elif parent == 'weighted':
2020-01-22 18:17:08 -08:00
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
2019-07-24 19:02:24 +02:00
# Mutate
mp, s = 0.8, 0.2 # mutation probability, sigma
2020-01-29 14:26:37 -08:00
npr = np.random
npr.seed(int(time.time()))
g = np.array([x[0] for x in meta.values()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
2020-01-14 22:22:24 -08:00
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = float(x[i + 7] * v[i]) # mutate
2019-04-17 17:27:51 +02:00
# Constrain to limits
for k, v in meta.items():
hyp[k] = max(hyp[k], v[1]) # lower limit
hyp[k] = min(hyp[k], v[2]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits
2019-04-17 19:04:01 +02:00
2019-07-01 17:14:42 +02:00
# Train mutation
results = train(hyp.copy(), opt, device, wandb=wandb)
2019-04-17 17:27:51 +02:00
# Write mutation results
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
2019-07-25 17:49:54 +02:00
# Plot results
plot_evolution(yaml_file)
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')