diff --git a/README.md b/README.md index b0eff517..b10092a0 100755 --- a/README.md +++ b/README.md @@ -155,11 +155,12 @@ YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive. ```bash $ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 608 -Namespace(batch_size=32, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weights/yolov3-spp-ultralytics.pt') +Namespace(batch_size=32, cfg='yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weights/yolov3-spp-ultralytics.pt') Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB) Class Images Targets P R mAP@0.5 F1: 100%|█████| 157/157 [02:46<00:00, 1.06s/it] all 5e+03 3.51e+04 0.822 0.433 0.611 0.551 + Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.419 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.618 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.448 @@ -172,6 +173,8 @@ Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memo Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.440 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.649 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.735 + +Speed: 6.6/1.6/8.2 ms inference/NMS/total per 608x608 image at batch-size 32 ``` # Reproduce Our Results