Pycocotools best.pt after COCO train (#1593)
This commit is contained in:
parent
adc49abc71
commit
4a07280884
5
test.py
5
test.py
@ -1,5 +1,4 @@
|
||||
import argparse
|
||||
import glob
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
@ -246,7 +245,7 @@ def test(data,
|
||||
# Save JSON
|
||||
if save_json and len(jdict):
|
||||
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
||||
anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json
|
||||
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
|
||||
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
||||
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
|
||||
with open(pred_json, 'w') as f:
|
||||
@ -266,7 +265,7 @@ def test(data,
|
||||
eval.summarize()
|
||||
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
||||
except Exception as e:
|
||||
print('ERROR: pycocotools unable to run: %s' % e)
|
||||
print(f'pycocotools unable to run: {e}')
|
||||
|
||||
# Return results
|
||||
if not training:
|
||||
|
||||
33
train.py
33
train.py
@ -22,6 +22,7 @@ from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
import test # import test.py to get mAP after each epoch
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
from utils.autoanchor import check_anchors
|
||||
from utils.datasets import create_dataloader
|
||||
@ -193,9 +194,9 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
||||
# Process 0
|
||||
if rank in [-1, 0]:
|
||||
ema.updates = start_epoch * nb // accumulate # set EMA updates
|
||||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
|
||||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, # testloader
|
||||
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
|
||||
rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader
|
||||
rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0]
|
||||
|
||||
if not opt.resume:
|
||||
labels = np.concatenate(dataset.labels, 0)
|
||||
@ -385,15 +386,12 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
||||
|
||||
if rank in [-1, 0]:
|
||||
# Strip optimizers
|
||||
n = opt.name if opt.name.isnumeric() else ''
|
||||
fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
|
||||
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
|
||||
if f1.exists():
|
||||
os.rename(f1, f2) # rename
|
||||
if str(f2).endswith('.pt'): # is *.pt
|
||||
strip_optimizer(f2) # strip optimizer
|
||||
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
|
||||
# Finish
|
||||
for f in [last, best]:
|
||||
if f.exists(): # is *.pt
|
||||
strip_optimizer(f) # strip optimizer
|
||||
os.system('gsutil cp %s gs://%s/weights' % (f, opt.bucket)) if opt.bucket else None # upload
|
||||
|
||||
# Plots
|
||||
if plots:
|
||||
plot_results(save_dir=save_dir) # save as results.png
|
||||
if wandb:
|
||||
@ -401,6 +399,19 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
||||
wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
|
||||
if (save_dir / f).exists()]})
|
||||
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||||
|
||||
# Test best.pt
|
||||
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
|
||||
results, _, _ = test.test(opt.data,
|
||||
batch_size=total_batch_size,
|
||||
imgsz=imgsz_test,
|
||||
model=attempt_load(best if best.exists() else last, device).half(),
|
||||
single_cls=opt.single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=save_dir,
|
||||
save_json=True, # use pycocotools
|
||||
plots=False)
|
||||
|
||||
else:
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
@ -17,7 +17,7 @@ def gsutil_getsize(url=''):
|
||||
|
||||
def attempt_download(weights):
|
||||
# Attempt to download pretrained weights if not found locally
|
||||
weights = weights.strip().replace("'", '')
|
||||
weights = str(weights).strip().replace("'", '')
|
||||
file = Path(weights).name.lower()
|
||||
|
||||
msg = weights + ' missing, try downloading from https://github.com/ultralytics/yolov3/releases/'
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user