diff --git a/README.md b/README.md
index b26a29ac..18d71f0e 100644
--- a/README.md
+++ b/README.md
@@ -1,16 +1,16 @@
-
-
+
+
[English](README.md) | [简体中文](README.zh-CN.md)
-

-

-

+

+

+

@@ -18,12 +18,9 @@
-🚀 is the world's most loved vision AI, representing
Ultralytics open-source
-research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours
-of research and development.
+YOLOv3 🚀 is the world's most loved vision AI, representing
Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
-To request an Enterprise License please complete the form at
Ultralytics
-Licensing.
+To request an Enterprise License please complete the form at
Ultralytics Licensing.
@@ -70,13 +67,12 @@ pip install ultralytics
## Documentation
-See the [ Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. See below for
-quickstart examples.
+See the [YOLOv3 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. See below for quickstart examples.
Install
-Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) in a
+Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
@@ -91,17 +87,14 @@ pip install -r requirements.txt # install
Inference
-[PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
-inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
-[release](https://github.com/ultralytics/yolov5/releases).
+YOLOv3 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
+YOLOv3 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
-model = torch.hub.load(
- "ultralytics/yolov3", "yolov3"
-) # or yolov3-spp, yolov3-tiny, custom
+model = torch.hub.load("ultralytics/yolov3", "yolov3") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
@@ -118,9 +111,8 @@ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py
-`detect.py` runs inference on a variety of sources,
-downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
-the latest [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
+`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
+the latest YOLOv3 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
@@ -140,13 +132,13 @@ python detect.py --weights yolov5s.pt --source 0 #
Training
-The commands below reproduce [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
+The commands below reproduce YOLOv3 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
-[release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
+YOLOv3 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
-[AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
+YOLOv3 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
@@ -163,8 +155,8 @@ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml -
Tutorials
-- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)🚀 RECOMMENDED
-- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)☘️
+- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED
+- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️
RECOMMENDED
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
@@ -176,9 +168,9 @@ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml -
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
-- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)🌟 NEW
+- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW
- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
-- [ with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW
+- [YOLOv3 with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW
- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet) 🌟 NEW
@@ -187,7 +179,7 @@ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml -
-
+
@@ -205,38 +197,34 @@ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml -
-| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
-| :--------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------: |
-| Label and export your custom datasets directly to for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save models, resume training, and interactively visualise and debug predictions | Run inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
+| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
+| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
+| Label and export your custom datasets directly to YOLOv3 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv3 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv3 models, resume training, and interactively visualise and debug predictions | Run YOLOv3 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
##
Ultralytics HUB
-[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train 🚀
-models, and deploy to the real world in a seamless experience. Get started for **Free** now!
+Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLO 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!

-##
Why YOLO
+##
Why YOLOv3
-has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
+YOLOv3 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.

- YOLOv5-P5 640 Figure
+ YOLOv3-P5 640 Figure

Figure Notes
-- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset
- over various inference sizes from 256 to 1536.
-- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using
- a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
+- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
+- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
-- **Reproduce**
- by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
+- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
@@ -259,28 +247,16 @@ has been designed to be super easy to get started and simple to learn. We priori
Table Notes
-- All checkpoints are trained to 300 epochs with default settings. Nano and Small models
- use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all
- others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
-- **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
- Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
-- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/)
- instance. NMS times (~1 ms/img) not included.
Reproduce
- by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
-- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale
- augmentations.
Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
+- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
+- **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
+- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.
Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
+- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.
Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
##
Segmentation
-Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the
-fastest and most accurate in the world, beating all
-current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them
-super simple to train, validate and deploy. See full details in
-our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit
-our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for
-quickstart tutorials.
+Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
Segmentation Checkpoints
@@ -290,9 +266,7 @@ quickstart tutorials.
-We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models
-to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on
-Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
+We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
| Model | size