parent
b8956dd5a5
commit
72a9c9628a
@ -522,16 +522,16 @@ class Model(nn.Module):
|
|||||||
if isinstance(m, Detect):
|
if isinstance(m, Detect):
|
||||||
s = 256 # 2x min stride
|
s = 256 # 2x min stride
|
||||||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
m.anchors /= m.stride.view(-1, 1, 1)
|
|
||||||
check_anchor_order(m)
|
check_anchor_order(m)
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
self.stride = m.stride
|
self.stride = m.stride
|
||||||
self._initialize_biases() # only run once
|
self._initialize_biases() # only run once
|
||||||
# print('Strides: %s' % m.stride.tolist())
|
# print('Strides: %s' % m.stride.tolist())
|
||||||
if isinstance(m, IDetect):
|
if isinstance(m, IDetect):
|
||||||
s = 256 # 2x min stride
|
s = 256 # 2x min stride
|
||||||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
m.anchors /= m.stride.view(-1, 1, 1)
|
|
||||||
check_anchor_order(m)
|
check_anchor_order(m)
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
self.stride = m.stride
|
self.stride = m.stride
|
||||||
self._initialize_biases() # only run once
|
self._initialize_biases() # only run once
|
||||||
# print('Strides: %s' % m.stride.tolist())
|
# print('Strides: %s' % m.stride.tolist())
|
||||||
@ -539,24 +539,24 @@ class Model(nn.Module):
|
|||||||
s = 256 # 2x min stride
|
s = 256 # 2x min stride
|
||||||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
|
||||||
#print(m.stride)
|
#print(m.stride)
|
||||||
m.anchors /= m.stride.view(-1, 1, 1)
|
|
||||||
check_anchor_order(m)
|
check_anchor_order(m)
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
self.stride = m.stride
|
self.stride = m.stride
|
||||||
self._initialize_aux_biases() # only run once
|
self._initialize_aux_biases() # only run once
|
||||||
# print('Strides: %s' % m.stride.tolist())
|
# print('Strides: %s' % m.stride.tolist())
|
||||||
if isinstance(m, IBin):
|
if isinstance(m, IBin):
|
||||||
s = 256 # 2x min stride
|
s = 256 # 2x min stride
|
||||||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
m.anchors /= m.stride.view(-1, 1, 1)
|
|
||||||
check_anchor_order(m)
|
check_anchor_order(m)
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
self.stride = m.stride
|
self.stride = m.stride
|
||||||
self._initialize_biases_bin() # only run once
|
self._initialize_biases_bin() # only run once
|
||||||
# print('Strides: %s' % m.stride.tolist())
|
# print('Strides: %s' % m.stride.tolist())
|
||||||
if isinstance(m, IKeypoint):
|
if isinstance(m, IKeypoint):
|
||||||
s = 256 # 2x min stride
|
s = 256 # 2x min stride
|
||||||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
m.anchors /= m.stride.view(-1, 1, 1)
|
|
||||||
check_anchor_order(m)
|
check_anchor_order(m)
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
self.stride = m.stride
|
self.stride = m.stride
|
||||||
self._initialize_biases_kpt() # only run once
|
self._initialize_biases_kpt() # only run once
|
||||||
# print('Strides: %s' % m.stride.tolist())
|
# print('Strides: %s' % m.stride.tolist())
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user