YOLOv5 v6.0 compatibility update (#1857)

* Initial commit

* Initial commit

* Cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix precommit errors

* Remove TF builds from CI

* export last.pt

* Created using Colaboratory

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2021-11-14 22:22:59 +01:00 committed by GitHub
parent 1be31704c9
commit 7eb23e3c1d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
90 changed files with 6642 additions and 4145 deletions

View File

@ -8,17 +8,21 @@ coco
storage.googleapis.com
data/samples/*
**/results*.txt
**/results*.csv
*.jpg
# Neural Network weights -----------------------------------------------------------------------------------------------
**/*.weights
**/*.pt
**/*.pth
**/*.onnx
**/*.mlmodel
**/*.torchscript
**/*.torchscript.pt
**/*.tflite
**/*.h5
**/*.pb
*_saved_model/
*_web_model/
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
# Below Copied From .gitignore -----------------------------------------------------------------------------------------

View File

@ -1,55 +0,0 @@
---
name: "🐛 Bug report"
about: Create a report to help us improve
title: ''
labels: bug
assignees: ''
---
Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following, otherwise it is non-actionable, and we can not help you:
- **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo
- **Common dataset**: coco.yaml or coco128.yaml
- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov3#environments
If this is a custom dataset/training question you **must include** your `train*.jpg`, `test*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`.
## 🐛 Bug
A clear and concise description of what the bug is.
## To Reproduce (REQUIRED)
Input:
```
import torch
a = torch.tensor([5])
c = a / 0
```
Output:
```
Traceback (most recent call last):
File "/Users/glennjocher/opt/anaconda3/envs/env1/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-5-be04c762b799>", line 5, in <module>
c = a / 0
RuntimeError: ZeroDivisionError
```
## Expected behavior
A clear and concise description of what you expected to happen.
## Environment
If applicable, add screenshots to help explain your problem.
- OS: [e.g. Ubuntu]
- GPU [e.g. 2080 Ti]
## Additional context
Add any other context about the problem here.

85
.github/ISSUE_TEMPLATE/bug-report.yml vendored Normal file
View File

@ -0,0 +1,85 @@
name: 🐛 Bug Report
# title: " "
description: Problems with YOLOv3
labels: [bug, triage]
body:
- type: markdown
attributes:
value: |
Thank you for submitting a YOLOv3 🐛 Bug Report!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov3/issues) to see if a similar bug report already exists.
options:
- label: >
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov3/issues) and found no similar bug report.
required: true
- type: dropdown
attributes:
label: YOLOv3 Component
description: |
Please select the part of YOLOv3 where you found the bug.
multiple: true
options:
- "Training"
- "Validation"
- "Detection"
- "Export"
- "PyTorch Hub"
- "Multi-GPU"
- "Evolution"
- "Integrations"
- "Other"
validations:
required: false
- type: textarea
attributes:
label: Bug
description: Provide console output with error messages and/or screenshots of the bug.
placeholder: |
💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
validations:
required: true
- type: textarea
attributes:
label: Environment
description: Please specify the software and hardware you used to produce the bug.
placeholder: |
- YOLO: YOLOv3 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
- OS: Ubuntu 20.04
- Python: 3.9.0
validations:
required: false
- type: textarea
attributes:
label: Minimal Reproducible Example
description: >
When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
This is referred to by community members as creating a [minimal reproducible example](https://stackoverflow.com/help/minimal-reproducible-example).
placeholder: |
```
# Code to reproduce your issue here
```
validations:
required: false
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?
- type: checkboxes
attributes:
label: Are you willing to submit a PR?
description: >
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov3/pulls) (PR) to help improve YOLOv3 for everyone, especially if you have a good understanding of how to implement a fix or feature.
See the YOLOv3 [Contributing Guide](https://github.com/ultralytics/yolov3/blob/master/CONTRIBUTING.md) to get started.
options:
- label: Yes I'd like to help by submitting a PR!

8
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1,8 @@
blank_issues_enabled: true
contact_links:
- name: Slack
url: https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg
about: Ask on Ultralytics Slack Forum
- name: Stack Overflow
url: https://stackoverflow.com/search?q=YOLOv3
about: Ask on Stack Overflow with 'YOLOv3' tag

View File

@ -1,27 +0,0 @@
---
name: "🚀 Feature request"
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
## 🚀 Feature
<!-- A clear and concise description of the feature proposal -->
## Motivation
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too -->
## Pitch
<!-- A clear and concise description of what you want to happen. -->
## Alternatives
<!-- A clear and concise description of any alternative solutions or features you've considered, if any. -->
## Additional context
<!-- Add any other context or screenshots about the feature request here. -->

View File

@ -0,0 +1,50 @@
name: 🚀 Feature Request
description: Suggest a YOLOv3 idea
# title: " "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Thank you for submitting a YOLOv3 🚀 Feature Request!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov3/issues) to see if a similar feature request already exists.
options:
- label: >
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov3/issues) and found no similar feature requests.
required: true
- type: textarea
attributes:
label: Description
description: A short description of your feature.
placeholder: |
What new feature would you like to see in YOLOv3?
validations:
required: true
- type: textarea
attributes:
label: Use case
description: |
Describe the use case of your feature request. It will help us understand and prioritize the feature request.
placeholder: |
How would this feature be used, and who would use it?
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?
- type: checkboxes
attributes:
label: Are you willing to submit a PR?
description: >
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov3/pulls) (PR) to help improve YOLOv3 for everyone, especially if you have a good understanding of how to implement a fix or feature.
See the YOLOv3 [Contributing Guide](https://github.com/ultralytics/yolov3/blob/master/CONTRIBUTING.md) to get started.
options:
- label: Yes I'd like to help by submitting a PR!

View File

@ -1,13 +0,0 @@
---
name: "❓Question"
about: Ask a general question
title: ''
labels: question
assignees: ''
---
## ❔Question
## Additional context

33
.github/ISSUE_TEMPLATE/question.yml vendored Normal file
View File

@ -0,0 +1,33 @@
name: ❓ Question
description: Ask a YOLOv3 question
# title: " "
labels: [question]
body:
- type: markdown
attributes:
value: |
Thank you for asking a YOLOv3 ❓ Question!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov3/issues) and [discussions](https://github.com/ultralytics/yolov3/discussions) to see if a similar question already exists.
options:
- label: >
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov3/issues) and [discussions](https://github.com/ultralytics/yolov3/discussions) and found no similar questions.
required: true
- type: textarea
attributes:
label: Question
description: What is your question?
placeholder: |
💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
validations:
required: true
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?

View File

@ -1,6 +1,6 @@
version: 2
updates:
- package-ecosystem: pip
- package-ecosystem: pip
directory: "/"
schedule:
interval: weekly
@ -10,3 +10,14 @@ updates:
- glenn-jocher
labels:
- dependencies
- package-ecosystem: github-actions
directory: "/"
schedule:
interval: weekly
time: "04:00"
open-pull-requests-limit: 5
reviewers:
- glenn-jocher
labels:
- dependencies

View File

@ -1,3 +1,5 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
name: CI CPU testing
on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows
@ -16,9 +18,9 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
python-version: [3.8]
model: ['yolov3-tiny'] # models to test
os: [ ubuntu-latest, macos-latest, windows-latest ]
python-version: [ 3.9 ]
model: [ 'yolov3-tiny' ] # models to test
# Timeout: https://stackoverflow.com/a/59076067/4521646
timeout-minutes: 50
@ -37,23 +39,27 @@ jobs:
python -c "from pip._internal.locations import USER_CACHE_DIR; print('::set-output name=dir::' + USER_CACHE_DIR)"
- name: Cache pip
uses: actions/cache@v1
uses: actions/cache@v2.1.6
with:
path: ${{ steps.pip-cache.outputs.dir }}
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
restore-keys: |
${{ runner.os }}-${{ matrix.python-version }}-pip-
# Known Keras 2.7.0 issue: https://github.com/ultralytics/yolov5/pull/5486
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
pip install -q onnx
pip install -q onnx tensorflow-cpu keras==2.6.0 # wandb # extras
python --version
pip --version
pip list
shell: bash
# - name: W&B login
# run: wandb login 345011b3fb26dc8337fd9b20e53857c1d403f2aa
- name: Download data
run: |
# curl -L -o tmp.zip https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
@ -63,18 +69,26 @@ jobs:
- name: Tests workflow
run: |
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
di=cpu # inference devices # define device
di=cpu # device
# train
python train.py --img 128 --batch 16 --weights weights/${{ matrix.model }}.pt --cfg models/${{ matrix.model }}.yaml --epochs 1 --device $di
# detect
python detect.py --weights weights/${{ matrix.model }}.pt --device $di
# Train
python train.py --img 64 --batch 32 --weights ${{ matrix.model }}.pt --cfg ${{ matrix.model }}.yaml --epochs 1 --device $di
# Val
python val.py --img 64 --batch 32 --weights ${{ matrix.model }}.pt --device $di
python val.py --img 64 --batch 32 --weights runs/train/exp/weights/last.pt --device $di
# Detect
python detect.py --weights ${{ matrix.model }}.pt --device $di
python detect.py --weights runs/train/exp/weights/last.pt --device $di
# test
python test.py --img 128 --batch 16 --weights weights/${{ matrix.model }}.pt --device $di
python test.py --img 128 --batch 16 --weights runs/train/exp/weights/last.pt --device $di
python hubconf.py # hub
python models/yolo.py --cfg models/${{ matrix.model }}.yaml # inspect
python models/export.py --img 128 --batch 1 --weights weights/${{ matrix.model }}.pt # export
# Export
python models/yolo.py --cfg ${{ matrix.model }}.yaml # build PyTorch model
# python models/tf.py --weights ${{ matrix.model }}.pt # build TensorFlow model (YOLOv3 not supported)
python export.py --img 64 --batch 1 --weights runs/train/exp/weights/last.pt --include torchscript onnx # export
# Python
python - <<EOF
import torch
# Known issue, urllib.error.HTTPError: HTTP Error 403: rate limit exceeded, will be resolved in torch==1.10.0
# model = torch.hub.load('ultralytics/yolov3', 'custom', path='runs/train/exp/weights/last.pt')
EOF
shell: bash

View File

@ -15,7 +15,7 @@ jobs:
strategy:
fail-fast: false
matrix:
language: [ 'python' ]
language: ['python']
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
# Learn more:
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed

View File

@ -1,3 +1,5 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
name: Greetings
on: [pull_request_target, issues]
@ -11,12 +13,12 @@ jobs:
repo-token: ${{ secrets.GITHUB_TOKEN }}
pr-message: |
👋 Hello @${{ github.actor }}, thank you for submitting a 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
- ✅ Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master update by running the following, replacing 'feature' with the name of your local branch:
- ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an automatic [GitHub actions](https://github.com/ultralytics/yolov3/blob/master/.github/workflows/rebase.yml) rebase may be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature' with the name of your local branch:
```bash
git remote add upstream https://github.com/ultralytics/yolov3.git
git fetch upstream
git checkout feature # <----- replace 'feature' with local branch name
git rebase upstream/master
git merge upstream/master
git push -u origin -f
```
- ✅ Verify all Continuous Integration (CI) **checks are passing**.
@ -29,12 +31,14 @@ jobs:
If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data#visualize) if available.
For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
For business inquiries or professional support requests please visit https://ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
[**Python>=3.6.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started:
```bash
$ git clone https://github.com/ultralytics/yolov3
$ cd yolov3
$ pip install -r requirements.txt
```
@ -50,7 +54,6 @@ jobs:
## Status
![CI CPU testing](https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg)
If this badge is green, all [YOLOv3 GitHub Actions](https://github.com/ultralytics/yolov3/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv3 training ([train.py](https://github.com/ultralytics/yolov3/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov3/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov3/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov3/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
If this badge is green, all [YOLOv3 GitHub Actions](https://github.com/ultralytics/yolov3/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv3 training ([train.py](https://github.com/ultralytics/yolov3/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov3/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov3/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov3/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

View File

@ -1,10 +1,9 @@
name: Automatic Rebase
# https://github.com/marketplace/actions/automatic-rebase
name: Automatic Rebase
on:
issue_comment:
types: [created]
jobs:
rebase:
name: Rebase
@ -14,8 +13,9 @@ jobs:
- name: Checkout the latest code
uses: actions/checkout@v2
with:
fetch-depth: 0
token: ${{ secrets.ACTIONS_TOKEN }}
fetch-depth: 0 # otherwise, you will fail to push refs to dest repo
- name: Automatic Rebase
uses: cirrus-actions/rebase@1.3.1
uses: cirrus-actions/rebase@1.5
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_TOKEN: ${{ secrets.ACTIONS_TOKEN }}

View File

@ -1,3 +1,5 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
name: Close stale issues
on:
schedule:
@ -7,19 +9,19 @@ jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v3
- uses: actions/stale@v4
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-message: |
👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.
Access additional [YOLOv3](https://ultralytics.com/yolov5) 🚀 resources:
Access additional [YOLOv3](https://ultralytics.com/yolov3) 🚀 resources:
- **Wiki** https://github.com/ultralytics/yolov3/wiki
- **Tutorials** https://github.com/ultralytics/yolov3#tutorials
- **Docs** https://docs.ultralytics.com
Access additional [Ultralytics](https://ultralytics.com) ⚡ resources:
- **Ultralytics HUB** https://ultralytics.com/pricing
- **Ultralytics HUB** https://ultralytics.com/hub
- **Vision API** https://ultralytics.com/yolov5
- **About Us** https://ultralytics.com/about
- **Join Our Team** https://ultralytics.com/work
@ -29,7 +31,7 @@ jobs:
Thank you for your contributions to YOLOv3 🚀 and Vision AI ⭐!
stale-pr-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv3 🚀 and Vision AI ⭐.'
stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv3 🚀 and Vision AI ⭐.'
days-before-stale: 30
days-before-close: 5
exempt-issue-labels: 'documentation,tutorial'

20
.gitignore vendored
View File

@ -19,26 +19,19 @@
*.avi
*.data
*.json
*.cfg
!setup.cfg
!cfg/yolov3*.cfg
storage.googleapis.com
runs/*
data/*
!data/hyps/*
!data/images/zidane.jpg
!data/images/bus.jpg
!data/coco.names
!data/coco_paper.names
!data/coco.data
!data/coco_*.data
!data/coco_*.txt
!data/trainvalno5k.shapes
!data/*.sh
pycocotools/*
results*.txt
gcp_test*.sh
results*.csv
# Datasets -------------------------------------------------------------------------------------------------------------
coco/
@ -53,9 +46,14 @@ VOC/
# Neural Network weights -----------------------------------------------------------------------------------------------
*.weights
*.pt
*.pb
*.onnx
*.mlmodel
*.torchscript
*.tflite
*.h5
*_saved_model/
*_web_model/
darknet53.conv.74
yolov3-tiny.conv.15
@ -84,7 +82,7 @@ sdist/
var/
wheels/
*.egg-info/
wandb/
/wandb/
.installed.cfg
*.egg

66
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,66 @@
# Define hooks for code formations
# Will be applied on any updated commit files if a user has installed and linked commit hook
default_language_version:
python: python3.8
# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
ci:
autofix_prs: true
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
autoupdate_schedule: quarterly
# submodules: true
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.0.1
hooks:
- id: end-of-file-fixer
- id: trailing-whitespace
- id: check-case-conflict
- id: check-yaml
- id: check-toml
- id: pretty-format-json
- id: check-docstring-first
- repo: https://github.com/asottile/pyupgrade
rev: v2.23.1
hooks:
- id: pyupgrade
args: [--py36-plus]
name: Upgrade code
- repo: https://github.com/PyCQA/isort
rev: 5.9.3
hooks:
- id: isort
name: Sort imports
# TODO
#- repo: https://github.com/pre-commit/mirrors-yapf
# rev: v0.31.0
# hooks:
# - id: yapf
# name: formatting
# TODO
#- repo: https://github.com/executablebooks/mdformat
# rev: 0.7.7
# hooks:
# - id: mdformat
# additional_dependencies:
# - mdformat-gfm
# - mdformat-black
# - mdformat_frontmatter
# TODO
#- repo: https://github.com/asottile/yesqa
# rev: v1.2.3
# hooks:
# - id: yesqa
- repo: https://github.com/PyCQA/flake8
rev: 3.9.2
hooks:
- id: flake8
name: PEP8

94
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,94 @@
## Contributing to YOLOv3 🚀
We love your input! We want to make contributing to YOLOv3 as easy and transparent as possible, whether it's:
- Reporting a bug
- Discussing the current state of the code
- Submitting a fix
- Proposing a new feature
- Becoming a maintainer
YOLOv3 works so well due to our combined community effort, and for every small improvement you contribute you will be
helping push the frontiers of what's possible in AI 😃!
## Submitting a Pull Request (PR) 🛠️
Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
### 1. Select File to Update
Select `requirements.txt` to update by clicking on it in GitHub.
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
### 2. Click 'Edit this file'
Button is in top-right corner.
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
### 3. Make Changes
Change `matplotlib` version from `3.2.2` to `3.3`.
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
### 4. Preview Changes and Submit PR
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
changes** button. All done, your PR is now submitted to YOLOv3 for review and approval 😃!
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
### PR recommendations
To allow your work to be integrated as seamlessly as possible, we advise you to:
- ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an
automatic [GitHub actions](https://github.com/ultralytics/yolov3/blob/master/.github/workflows/rebase.yml) rebase may
be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature'
with the name of your local branch:
```bash
git remote add upstream https://github.com/ultralytics/yolov3.git
git fetch upstream
git checkout feature # <----- replace 'feature' with local branch name
git merge upstream/master
git push -u origin -f
```
- ✅ Verify all Continuous Integration (CI) **checks are passing**.
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
## Submitting a Bug Report 🐛
If you spot a problem with YOLOv3 please submit a Bug Report!
For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
short guidelines below to help users provide what we need in order to get started.
When asking a question, people will be better able to provide help if you provide **code** that they can easily
understand and use to **reproduce** the problem. This is referred to by community members as creating
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
the problem should be:
* ✅ **Minimal** Use as little code as possible that still produces the same problem
* ✅ **Complete** Provide **all** parts someone else needs to reproduce your problem in the question itself
* ✅ **Reproducible** Test the code you're about to provide to make sure it reproduces the problem
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
should be:
* ✅ **Current** Verify that your code is up-to-date with current
GitHub [master](https://github.com/ultralytics/yolov3/tree/master), and if necessary `git pull` or `git clone` a new
copy to ensure your problem has not already been resolved by previous commits.
* ✅ **Unmodified** Your problem must be reproducible without any modifications to the codebase in this
repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **
Bug Report** [template](https://github.com/ultralytics/yolov3/issues/new/choose) and providing
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
understand and diagnose your problem.
## License
By contributing, you agree that your contributions will be licensed under
the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)

View File

@ -1,5 +1,7 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:21.03-py3
FROM nvcr.io/nvidia/pytorch:21.10-py3
# Install linux packages
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
@ -8,7 +10,9 @@ RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
COPY requirements.txt .
RUN python -m pip install --upgrade pip
RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook
RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook wandb>=0.12.2
RUN pip install --no-cache -U torch torchvision numpy Pillow
# RUN pip install --no-cache torch==1.10.0+cu113 torchvision==0.11.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
# Create working directory
RUN mkdir -p /usr/src/app
@ -17,27 +21,29 @@ WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/
# Set environment variables
ENV HOME=/usr/src/app
# ENV HOME=/usr/src/app
# --------------------------------------------------- Extras Below ---------------------------------------------------
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/yolov3:latest && sudo docker build -t $t . && sudo docker push $t
# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
# Pull and Run
# t=ultralytics/yolov3:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
# Pull and Run with local directory access
# t=ultralytics/yolov3:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
# t=ultralytics/yolov3:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
# Kill all
# sudo docker kill $(sudo docker ps -q)
# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov3:latest)
# Bash into running container
# sudo docker exec -it 5a9b5863d93d bash
@ -45,8 +51,11 @@ ENV HOME=/usr/src/app
# Bash into stopped container
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
# Send weights to GCP
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
# Clean up
# docker system prune -a --volumes
# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3

347
README.md Executable file → Normal file
View File

@ -1,76 +1,141 @@
<a align="left" href="https://apps.apple.com/app/id1452689527" target="_blank">
<img width="800" src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg"></a>
&nbsp
<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov3" target="_blank">
<img width="850" src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv3 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<br>
<p>
YOLOv3 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<!--
<a align="center" href="https://ultralytics.com/yolov3" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114424655-a0dc1e00-9bb8-11eb-9a2e-cbe21803f05c.png"></p>
<details>
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
</div>
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
</details>
<details>
<summary>Figure Notes (click to expand)</summary>
## <div align="center">Documentation</div>
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov3.pt yolov3-spp.pt yolov3-tiny.pt yolov5l.pt`
</details>
See the [YOLOv3 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
## Branch Notice
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
The [ultralytics/yolov3](https://github.com/ultralytics/yolov3) repository is now divided into two branches:
* [Master branch](https://github.com/ultralytics/yolov3/tree/master): Forward-compatible with all [YOLOv5](https://github.com/ultralytics/yolov5) models and methods (**recommended** ✅).
```bash
$ git clone https://github.com/ultralytics/yolov3 # master branch (default)
```
* [Archive branch](https://github.com/ultralytics/yolov3/tree/archive): Backwards-compatible with original [darknet](https://pjreddie.com/darknet/) *.cfg models (**no longer maintained** ⚠️).
```bash
$ git clone https://github.com/ultralytics/yolov3 -b archive # archive branch
```
## Pretrained Checkpoints
[assets3]: https://github.com/ultralytics/yolov3/releases
[assets5]: https://github.com/ultralytics/yolov5/releases
Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPS<br><sup>640 (B)
--- |--- |--- |--- |--- |--- |---|--- |---
[YOLOv3-tiny][assets3] |640 |17.6 |17.6 |34.8 |**1.2** | |8.8 |13.2
[YOLOv3][assets3] |640 |43.3 |43.3 |63.0 |4.1 | |61.9 |156.3
[YOLOv3-SPP][assets3] |640 |44.3 |44.3 |64.6 |4.1 | |63.0 |157.1
| | | | | | || |
[YOLOv5l][assets5] |640 |**48.2** |**48.2** |**66.9** |3.7 | |47.0 |115.4
<details>
<summary>Table Notes (click to expand)</summary>
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
</details>
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
```bash
$ git clone https://github.com/ultralytics/yolov3
$ cd yolov3
$ pip install -r requirements.txt
```
</details>
## Tutorials
<details open>
<summary>Inference</summary>
Inference with YOLOv3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️ RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov3/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518)&nbsp; 🌟 NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)&nbsp; 🌟 NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
@ -81,80 +146,128 @@ $ pip install -r requirements.txt
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## Environments
## <div align="center">Environments</div>
YOLOv3 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
Get started in seconds with our verified environments. Click each icon below for details.
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
</a>
</div>
## <div align="center">Integrations</div>
<div align="center">
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
</a>
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
</a>
</div>
|Weights and Biases|Roboflow ⭐ NEW|
|:-:|:-:|
|Automatically track and visualize all your YOLOv3 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv3 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
## Inference
## <div align="center">Why YOLOv5</div>
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube video
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136901921-abcfcd9d-f978-4942-9b97-0e3f202907df.png"></p>
<details>
<summary>YOLOv3-P5 640 Figure (click to expand)</summary>
To run inference on example images in `data/images`:
```bash
$ python detect.py --source data/images --weights yolov3.pt --conf 0.25
```
<img width="500" src="https://user-images.githubusercontent.com/26833433/100375993-06b37900-300f-11eb-8d2d-5fc7b22fbfbd.jpg">
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136763877-b174052b-c12f-48d2-8bc4-545e3853398e.png"></p>
</details>
<details>
<summary>Figure Notes (click to expand)</summary>
### PyTorch Hub
* **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>
To run **batched inference** with YOLOv3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
```python
import torch
### Pretrained Checkpoints
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or 'yolov3_spp', 'yolov3_tiny'
[assets]: https://github.com/ultralytics/yolov5/releases
[TTA]: https://github.com/ultralytics/yolov5/issues/303
# Image
img = 'https://ultralytics.com/images/zidane.jpg'
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
|--- |--- |--- |--- |--- |--- |--- |--- |---
|[YOLOv5n][assets] |640 |28.4 |46.0 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
|[YOLOv5s][assets] |640 |37.2 |56.0 |98 |6.4 |0.9 |7.2 |16.5
|[YOLOv5m][assets] |640 |45.2 |63.9 |224 |8.2 |1.7 |21.2 |49.0
|[YOLOv5l][assets] |640 |48.8 |67.2 |430 |10.1 |2.7 |46.5 |109.1
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
| | | | | | | | |
|[YOLOv5n6][assets] |1280 |34.0 |50.7 |153 |8.1 |2.1 |3.2 |4.6
|[YOLOv5s6][assets] |1280 |44.5 |63.0 |385 |8.2 |3.6 |16.8 |12.6
|[YOLOv5m6][assets] |1280 |51.0 |69.0 |887 |11.1 |6.8 |35.7 |50.0
|[YOLOv5l6][assets] |1280 |53.6 |71.6 |1784 |15.8 |10.5 |76.8 |111.4
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |54.7<br>**55.4** |**72.4**<br>72.3 |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
# Inference
results = model(img)
results.print() # or .show(), .save()
```
<details>
<summary>Table Notes (click to expand)</summary>
* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
## <div align="center">Contribute</div>
We love your input! We want to make contributing to YOLOv3 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv3 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
<a href="https://github.com/ultralytics/yolov3/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>
## Training
## <div align="center">Contact</div>
Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov3/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv3/YOLOv3-SPP/YOLOv3-tiny are 6/6/2 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov3.yaml --weights '' --batch-size 24
yolov3-spp.yaml 24
yolov3-tiny.yaml 64
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/100378028-af170c80-3012-11eb-8521-f0d2a8d021bc.png">
For YOLOv3 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov3/issues). For business inquiries or
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
<br>
## Citation
[![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888)
## About Us
Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
- **Custom data training**, hyperparameter evolution, and model exportation to any destination.
For business inquiries and professional support requests please visit us at https://ultralytics.com.
## Contact
**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
</a>
<img width="3%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
</a>
<img width="3%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
</a>
<img width="3%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
</a>
<img width="3%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
</a>
<img width="3%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
</a>
</div>

67
data/Argoverse.yaml Normal file
View File

@ -0,0 +1,67 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Example usage: python train.py --data Argoverse.yaml
# parent
# ├── yolov3
# └── datasets
# └── Argoverse ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
# Classes
nc: 8 # number of classes
names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
from tqdm import tqdm
from utils.general import download, Path
def argoverse2yolo(set):
labels = {}
a = json.load(open(set, "rb"))
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv3 format..."):
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = img_name[:-3] + "txt"
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920.0 # offset and scale
y_center = (y_center + height / 2) / 1200.0 # offset and scale
width /= 1920.0 # scale
height /= 1200.0 # scale
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
if not img_dir.exists():
img_dir.mkdir(parents=True, exist_ok=True)
k = str(img_dir / img_label_name)
if k not in labels:
labels[k] = []
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for k in labels:
with open(k, "w") as f:
f.writelines(labels[k])
# Download
dir = Path('../datasets/Argoverse') # dataset root dir
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
download(urls, dir=dir, delete=False)
# Convert
annotations_dir = 'Argoverse-HD/annotations/'
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
for d in "train.json", "val.json":
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels

View File

@ -1,43 +1,41 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Global Wheat 2020 dataset http://www.global-wheat.com/
# Train command: python train.py --data GlobalWheat2020.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /datasets/GlobalWheat2020
# /yolov3
# Example usage: python train.py --data GlobalWheat2020.yaml
# parent
# ├── yolov3
# └── datasets
# └── GlobalWheat2020 ← downloads here
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: # 3422 images
- ../datasets/GlobalWheat2020/images/arvalis_1
- ../datasets/GlobalWheat2020/images/arvalis_2
- ../datasets/GlobalWheat2020/images/arvalis_3
- ../datasets/GlobalWheat2020/images/ethz_1
- ../datasets/GlobalWheat2020/images/rres_1
- ../datasets/GlobalWheat2020/images/inrae_1
- ../datasets/GlobalWheat2020/images/usask_1
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/GlobalWheat2020 # dataset root dir
train: # train images (relative to 'path') 3422 images
- images/arvalis_1
- images/arvalis_2
- images/arvalis_3
- images/ethz_1
- images/rres_1
- images/inrae_1
- images/usask_1
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
- images/ethz_1
test: # test images (optional) 1276 images
- images/utokyo_1
- images/utokyo_2
- images/nau_1
- images/uq_1
val: # 748 images (WARNING: train set contains ethz_1)
- ../datasets/GlobalWheat2020/images/ethz_1
test: # 1276 images
- ../datasets/GlobalWheat2020/images/utokyo_1
- ../datasets/GlobalWheat2020/images/utokyo_2
- ../datasets/GlobalWheat2020/images/nau_1
- ../datasets/GlobalWheat2020/images/uq_1
# number of classes
nc: 1
# class names
names: [ 'wheat_head' ]
# Classes
nc: 1 # number of classes
names: ['wheat_head'] # class names
# download command/URL (optional) --------------------------------------------------------------------------------------
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from utils.general import download, Path
# Download
dir = Path('../datasets/GlobalWheat2020') # dataset directory
dir = Path(yaml['path']) # dataset root dir
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
download(urls, dir=dir)

View File

@ -1,39 +1,39 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
# Train command: python train.py --data SKU-110K.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /datasets/SKU-110K
# /yolov3
# Example usage: python train.py --data SKU-110K.yaml
# parent
# ├── yolov3
# └── datasets
# └── SKU-110K ← downloads here
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../datasets/SKU-110K/train.txt # 8219 images
val: ../datasets/SKU-110K/val.txt # 588 images
test: ../datasets/SKU-110K/test.txt # 2936 images
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/SKU-110K # dataset root dir
train: train.txt # train images (relative to 'path') 8219 images
val: val.txt # val images (relative to 'path') 588 images
test: test.txt # test images (optional) 2936 images
# number of classes
nc: 1
# class names
names: [ 'object' ]
# Classes
nc: 1 # number of classes
names: ['object'] # class names
# download command/URL (optional) --------------------------------------------------------------------------------------
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import shutil
from tqdm import tqdm
from utils.general import np, pd, Path, download, xyxy2xywh
# Download
datasets = Path('../datasets') # download directory
dir = Path(yaml['path']) # dataset root dir
parent = Path(dir.parent) # download dir
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
download(urls, dir=datasets, delete=False)
download(urls, dir=parent, delete=False)
# Rename directories
dir = (datasets / 'SKU-110K')
if dir.exists():
shutil.rmtree(dir)
(datasets / 'SKU110K_fixed').rename(dir) # rename dir
(parent / 'SKU110K_fixed').rename(dir) # rename dir
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
# Convert labels

View File

@ -1,24 +1,24 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
# Train command: python train.py --data VisDrone.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /VisDrone
# /yolov3
# Example usage: python train.py --data VisDrone.yaml
# parent
# ├── yolov3
# └── datasets
# └── VisDrone ← downloads here
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../VisDrone/VisDrone2019-DET-train/images # 6471 images
val: ../VisDrone/VisDrone2019-DET-val/images # 548 images
test: ../VisDrone/VisDrone2019-DET-test-dev/images # 1610 images
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VisDrone # dataset root dir
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
# number of classes
nc: 10
# class names
names: [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor' ]
# Classes
nc: 10 # number of classes
names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
# download command/URL (optional) --------------------------------------------------------------------------------------
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from utils.general import download, os, Path
@ -49,7 +49,7 @@ download: |
# Download
dir = Path('../VisDrone') # dataset directory
dir = Path(yaml['path']) # dataset root dir
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',

View File

@ -1,21 +0,0 @@
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Train command: python train.py --data argoverse_hd.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /argoverse
# /yolov3
# download command/URL (optional)
download: bash data/scripts/get_argoverse_hd.sh
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../argoverse/Argoverse-1.1/images/train/ # 39384 images
val: ../argoverse/Argoverse-1.1/images/val/ # 15062 iamges
test: ../argoverse/Argoverse-1.1/images/test/ # Submit to: https://eval.ai/web/challenges/challenge-page/800/overview
# number of classes
nc: 8
# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign' ]

View File

@ -1,24 +1,21 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# COCO 2017 dataset http://cocodataset.org
# Train command: python train.py --data coco.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /coco
# /yolov3
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov3
# └── datasets
# └── coco ← downloads here
# download command/URL (optional)
download: bash data/scripts/get_coco.sh
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # train images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../coco/train2017.txt # 118287 images
val: ../coco/val2017.txt # 5000 images
test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# number of classes
nc: 80
# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
# Classes
nc: 80 # number of classes
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
@ -26,10 +23,22 @@ names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', '
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ]
'hair drier', 'toothbrush'] # class names
# Print classes
# with open('data/coco.yaml') as f:
# d = yaml.safe_load(f) # dict
# for i, x in enumerate(d['names']):
# print(i, x)
# Download script/URL (optional)
download: |
from utils.general import download, Path
# Download labels
segments = False # segment or box labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)

View File

@ -1,23 +1,21 @@
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /coco128
# /yolov3
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov3
# └── datasets
# └── coco128 ← downloads here
# download command/URL (optional)
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../coco128/images/train2017/ # 128 images
val: ../coco128/images/train2017/ # 128 images
# number of classes
nc: 80
# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
# Classes
nc: 80 # number of classes
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
@ -25,4 +23,8 @@ names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', '
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ]
'hair drier', 'toothbrush'] # class names
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128.zip

View File

@ -1,38 +0,0 @@
# Hyperparameters for VOC finetuning
# python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
# Hyperparameter Evolution Results
# Generations: 306
# P R mAP.5 mAP.5:.95 box obj cls
# Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
lr0: 0.0032
lrf: 0.12
momentum: 0.843
weight_decay: 0.00036
warmup_epochs: 2.0
warmup_momentum: 0.5
warmup_bias_lr: 0.05
box: 0.0296
cls: 0.243
cls_pw: 0.631
obj: 0.301
obj_pw: 0.911
iou_t: 0.2
anchor_t: 2.91
# anchors: 3.63
fl_gamma: 0.0
hsv_h: 0.0138
hsv_s: 0.664
hsv_v: 0.464
degrees: 0.373
translate: 0.245
scale: 0.898
shear: 0.602
perspective: 0.0
flipud: 0.00856
fliplr: 0.5
mosaic: 1.0
mixup: 0.243

View File

@ -1,28 +0,0 @@
lr0: 0.00258
lrf: 0.17
momentum: 0.779
weight_decay: 0.00058
warmup_epochs: 1.33
warmup_momentum: 0.86
warmup_bias_lr: 0.0711
box: 0.0539
cls: 0.299
cls_pw: 0.825
obj: 0.632
obj_pw: 1.0
iou_t: 0.2
anchor_t: 3.44
anchors: 3.2
fl_gamma: 0.0
hsv_h: 0.0188
hsv_s: 0.704
hsv_v: 0.36
degrees: 0.0
translate: 0.0902
scale: 0.491
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0

View File

@ -0,0 +1,34 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for high-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.1 # segment copy-paste (probability)

View File

@ -0,0 +1,34 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for low-augmentation COCO training from scratch
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

View File

@ -0,0 +1,34 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for medium-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

View File

@ -1,10 +1,10 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for COCO training from scratch
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
@ -31,3 +31,4 @@ flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

View File

@ -1,19 +1,21 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Objects365 dataset https://www.objects365.org/
# Train command: python train.py --data objects365.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /datasets/objects365
# /yolov3
# Example usage: python train.py --data Objects365.yaml
# parent
# ├── yolov3
# └── datasets
# └── Objects365 ← downloads here
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../datasets/objects365/images/train # 1742289 images
val: ../datasets/objects365/images/val # 5570 images
# number of classes
nc: 365
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)
# class names
names: [ 'Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
# Classes
nc: 365 # number of classes
names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
@ -53,36 +55,44 @@ names: [ 'Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Gl
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis' ]
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
# download command/URL (optional) --------------------------------------------------------------------------------------
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from pycocotools.coco import COCO
from tqdm import tqdm
from utils.general import download, Path
from utils.general import Path, download, np, xyxy2xywhn
# Make Directories
dir = Path('../datasets/objects365') # dataset directory
dir = Path(yaml['path']) # dataset root dir
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Train, Val Splits
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
print(f"Processing {split} in {patches} patches ...")
images, labels = dir / 'images' / split, dir / 'labels' / split
# Download
url = "https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/"
download([url + 'zhiyuan_objv2_train.tar.gz'], dir=dir, delete=False) # annotations json
download([url + f for f in [f'patch{i}.tar.gz' for i in range(51)]], dir=dir / 'images' / 'train',
curl=True, delete=False, threads=8)
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
if split == 'train':
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
elif split == 'val':
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
# Move
train = dir / 'images' / 'train'
for f in tqdm(train.rglob('*.jpg'), desc=f'Moving images'):
f.rename(train / f.name) # move to /images/train
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
f.rename(images / f.name) # move to /images/{split}
# Labels
coco = COCO(dir / 'zhiyuan_objv2_train.json')
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
@ -91,12 +101,12 @@ download: |
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(dir / 'labels' / 'train' / path.with_suffix('.txt').name, 'a') as file:
with open(labels / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
x, y = x + w / 2, y + h / 2 # xy to center
file.write(f"{cid} {x / width:.5f} {y / height:.5f} {w / width:.5f} {h / height:.5f}\n")
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
except Exception as e:
print(e)

View File

@ -0,0 +1,18 @@
#!/bin/bash
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Download latest models from https://github.com/ultralytics/yolov3/releases
# Example usage: bash path/to/download_weights.sh
# parent
# └── yolov3
# ├── yolov3.pt ← downloads here
# ├── yolov3-spp.pt
# └── ...
python - <<EOF
from utils.downloads import attempt_download
models = ['yolov3', 'yolov3-spp', 'yolov3-tiny']
for x in models:
attempt_download(f'{x}.pt')
EOF

View File

@ -1,61 +0,0 @@
#!/bin/bash
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Download command: bash data/scripts/get_argoverse_hd.sh
# Train command: python train.py --data argoverse_hd.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /argoverse
# /yolov3
# Download/unzip images
d='../argoverse/' # unzip directory
mkdir $d
url=https://argoverse-hd.s3.us-east-2.amazonaws.com/
f=Argoverse-HD-Full.zip
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &# download, unzip, remove in background
wait # finish background tasks
cd ../argoverse/Argoverse-1.1/
ln -s tracking images
cd ../Argoverse-HD/annotations/
python3 - "$@" <<END
import json
from pathlib import Path
annotation_files = ["train.json", "val.json"]
print("Converting annotations to YOLOv3 format...")
for val in annotation_files:
a = json.load(open(val, "rb"))
label_dict = {}
for annot in a['annotations']:
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = img_name[:-3] + "txt"
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920. # offset and scale
y_center = (y_center + height / 2) / 1200. # offset and scale
width /= 1920. # scale
height /= 1200. # scale
img_dir = "./labels/" + a['seq_dirs'][a['images'][annot['image_id']]['sid']]
Path(img_dir).mkdir(parents=True, exist_ok=True)
if img_dir + "/" + img_label_name not in label_dict:
label_dict[img_dir + "/" + img_label_name] = []
label_dict[img_dir + "/" + img_label_name].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for filename in label_dict:
with open(filename, "w") as file:
for string in label_dict[filename]:
file.write(string)
END
mv ./labels ../../Argoverse-1.1/

View File

@ -1,27 +1,27 @@
#!/bin/bash
# COCO 2017 dataset http://cocodataset.org
# Download command: bash data/scripts/get_coco.sh
# Train command: python train.py --data coco.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /coco
# /yolov3
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Download COCO 2017 dataset http://cocodataset.org
# Example usage: bash data/scripts/get_coco.sh
# parent
# ├── yolov3
# └── datasets
# └── coco ← downloads here
# Download/unzip labels
d='../' # unzip directory
d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
# Download/unzip images
d='../coco/images' # unzip directory
d='../datasets/coco/images' # unzip directory
url=http://images.cocodataset.org/zips/
f1='train2017.zip' # 19G, 118k images
f2='val2017.zip' # 1G, 5k images
f3='test2017.zip' # 7G, 41k images (optional)
for f in $f1 $f2; do
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
done
wait # finish background tasks

View File

@ -1,17 +1,17 @@
#!/bin/bash
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128
# Download command: bash data/scripts/get_coco128.sh
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /coco128
# /yolov3
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: bash data/scripts/get_coco128.sh
# parent
# ├── yolov3
# └── datasets
# └── coco128 ← downloads here
# Download/unzip images and labels
d='../' # unzip directory
d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco128.zip' # or 'coco2017labels-segments.zip', 68 MB
f='coco128.zip' # or 'coco128-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
wait # finish background tasks

View File

@ -1,116 +0,0 @@
#!/bin/bash
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash data/scripts/get_voc.sh
# Train command: python train.py --data voc.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /VOC
# /yolov3
start=$(date +%s)
mkdir -p ../tmp
cd ../tmp/
# Download/unzip images and labels
d='.' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f1=VOCtrainval_06-Nov-2007.zip # 446MB, 5012 images
f2=VOCtest_06-Nov-2007.zip # 438MB, 4953 images
f3=VOCtrainval_11-May-2012.zip # 1.95GB, 17126 images
for f in $f3 $f2 $f1; do
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
done
wait # finish background tasks
end=$(date +%s)
runtime=$((end - start))
echo "Completed in" $runtime "seconds"
echo "Splitting dataset..."
python3 - "$@" <<END
import os
import xml.etree.ElementTree as ET
from os import getcwd
sets = [('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog",
"horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def convert_box(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
def convert_annotation(year, image_id):
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml' % (year, image_id))
out_file = open('VOCdevkit/VOC%s/labels/%s.txt' % (year, image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert_box((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
cwd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/' % year):
os.makedirs('VOCdevkit/VOC%s/labels/' % year)
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt' % (year, image_set)).read().strip().split()
list_file = open('%s_%s.txt' % (year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n' % (cwd, year, image_id))
convert_annotation(year, image_id)
list_file.close()
END
cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt >train.txt
cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt
mkdir ../VOC ../VOC/images ../VOC/images/train ../VOC/images/val
mkdir ../VOC/labels ../VOC/labels/train ../VOC/labels/val
python3 - "$@" <<END
import os
print(os.path.exists('../tmp/train.txt'))
with open('../tmp/train.txt', 'r') as f:
for line in f.readlines():
line = "/".join(line.split('/')[-5:]).strip()
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/images/train")
line = line.replace('JPEGImages', 'labels').replace('jpg', 'txt')
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/labels/train")
print(os.path.exists('../tmp/2007_test.txt'))
with open('../tmp/2007_test.txt', 'r') as f:
for line in f.readlines():
line = "/".join(line.split('/')[-5:]).strip()
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/images/val")
line = line.replace('JPEGImages', 'labels').replace('jpg', 'txt')
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/labels/val")
END
rm -rf ../tmp # remove temporary directory
echo "VOC download done."

View File

@ -1,21 +1,80 @@
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Train command: python train.py --data voc.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /VOC
# /yolov3
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC
# Example usage: python train.py --data VOC.yaml
# parent
# ├── yolov3
# └── datasets
# └── VOC ← downloads here
# download command/URL (optional)
download: bash data/scripts/get_voc.sh
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VOC
train: # train images (relative to 'path') 16551 images
- images/train2012
- images/train2007
- images/val2012
- images/val2007
val: # val images (relative to 'path') 4952 images
- images/test2007
test: # test images (optional)
- images/test2007
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../VOC/images/train/ # 16551 images
val: ../VOC/images/val/ # 4952 images
# Classes
nc: 20 # number of classes
names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
# number of classes
nc: 20
# class names
names: [ 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ]
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import xml.etree.ElementTree as ET
from tqdm import tqdm
from utils.general import download, Path
def convert_label(path, lb_path, year, image_id):
def convert_box(size, box):
dw, dh = 1. / size[0], 1. / size[1]
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
out_file = open(lb_path, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
cls = obj.find('name').text
if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
xmlbox = obj.find('bndbox')
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
cls_id = yaml['names'].index(cls) # class id
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
# Download
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
urls = [url + 'VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
url + 'VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
url + 'VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
download(urls, dir=dir / 'images', delete=False)
# Convert
path = dir / f'images/VOCdevkit'
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
imgs_path = dir / 'images' / f'{image_set}{year}'
lbs_path = dir / 'labels' / f'{image_set}{year}'
imgs_path.mkdir(exist_ok=True, parents=True)
lbs_path.mkdir(exist_ok=True, parents=True)
image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split()
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
f.rename(imgs_path / f.name) # move image
convert_label(path, lb_path, year, id) # convert labels to YOLO format

102
data/xView.yaml Normal file
View File

@ -0,0 +1,102 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# xView 2018 dataset https://challenge.xviewdataset.org
# -------- DOWNLOAD DATA MANUALLY from URL above and unzip to 'datasets/xView' before running train command! --------
# Example usage: python train.py --data xView.yaml
# parent
# ├── yolov3
# └── datasets
# └── xView ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/xView # dataset root dir
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
# Classes
nc: 60 # number of classes
names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
import os
from pathlib import Path
import numpy as np
from PIL import Image
from tqdm import tqdm
from utils.datasets import autosplit
from utils.general import download, xyxy2xywhn
def convert_labels(fname=Path('xView/xView_train.geojson')):
# Convert xView geoJSON labels to YOLO format
path = fname.parent
with open(fname) as f:
print(f'Loading {fname}...')
data = json.load(f)
# Make dirs
labels = Path(path / 'labels' / 'train')
os.system(f'rm -rf {labels}')
labels.mkdir(parents=True, exist_ok=True)
# xView classes 11-94 to 0-59
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
shapes = {}
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
p = feature['properties']
if p['bounds_imcoords']:
id = p['image_id']
file = path / 'train_images' / id
if file.exists(): # 1395.tif missing
try:
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
cls = p['type_id']
cls = xview_class2index[int(cls)] # xView class to 0-60
assert 59 >= cls >= 0, f'incorrect class index {cls}'
# Write YOLO label
if id not in shapes:
shapes[id] = Image.open(file).size
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
with open((labels / id).with_suffix('.txt'), 'a') as f:
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
except Exception as e:
print(f'WARNING: skipping one label for {file}: {e}')
# Download manually from https://challenge.xviewdataset.org
dir = Path(yaml['path']) # dataset root dir
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
# download(urls, dir=dir, delete=False)
# Convert labels
convert_labels(dir / 'xView_train.geojson')
# Move images
images = Path(dir / 'images')
images.mkdir(parents=True, exist_ok=True)
Path(dir / 'train_images').rename(dir / 'images' / 'train')
Path(dir / 'val_images').rename(dir / 'images' / 'val')
# Split
autosplit(dir / 'images' / 'train')

248
detect.py
View File

@ -1,98 +1,147 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.
Usage:
$ python path/to/detect.py --weights yolov3.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
"""
import argparse
import time
import os
import sys
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
from utils.plots import colors, plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
@torch.no_grad()
def detect(opt):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
imgsz=640, # inference size (pixels)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if half:
model.half() # to FP16
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn)
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
imgsz = check_img_size(imgsz, s=stride) # check image size
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Half
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt:
model.model.half() if half else model.model.float()
# Set Dataloader
vid_path, vid_writer = None, None
# Dataloader
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
if pt and device.type != 'cpu':
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms,
max_det=opt.max_det)
t2 = time_synchronized()
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if opt.save_crop else im0 # for opt.save_crop
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
@ -103,21 +152,22 @@ def detect(opt):
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or opt.save_crop or view_img: # Add bbox to image
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)
if opt.save_crop:
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)')
# Print time (inference-only)
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
@ -127,10 +177,10 @@ def detect(opt):
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
@ -138,47 +188,57 @@ def detect(opt):
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
if __name__ == '__main__':
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov3.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--max-det', type=int, default=1000, help='maximum number of detections per image')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov3.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
print(opt)
check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(FILE.stem, opt)
return opt
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov3.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt']:
detect(opt=opt)
strip_optimizer(opt.weights)
else:
detect(opt=opt)
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

369
export.py Normal file
View File

@ -0,0 +1,369 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Export a PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
TensorFlow exports authored by https://github.com/zldrobit
Usage:
$ python path/to/export.py --weights yolov3.pt --include torchscript onnx coreml saved_model pb tflite tfjs
Inference:
$ python path/to/detect.py --weights yolov3.pt
yolov3.onnx (must export with --dynamic)
yolov3_saved_model
yolov3.pb
yolov3.tflite
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/yolov3_web_model public/yolov3_web_model
$ npm start
"""
import argparse
import json
import os
import subprocess
import sys
import time
from pathlib import Path
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import Conv
from models.experimental import attempt_load
from models.yolo import Detect
from utils.activations import SiLU
from utils.datasets import LoadImages
from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, colorstr, file_size, print_args,
url2file)
from utils.torch_utils import select_device
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
# TorchScript model export
try:
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
f = file.with_suffix('.torchscript.pt')
ts = torch.jit.trace(model, im, strict=False)
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
(optimize_for_mobile(ts) if optimize else ts).save(f, _extra_files=extra_files)
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
LOGGER.info(f'{prefix} export failure: {e}')
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
# ONNX export
try:
check_requirements(('onnx',))
import onnx
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
f = file.with_suffix('.onnx')
torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not train,
input_names=['images'],
output_names=['output'],
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
} if dynamic else None)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print
# Simplify
if simplify:
try:
check_requirements(('onnx-simplifier',))
import onnxsim
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=dynamic,
input_shapes={'images': list(im.shape)} if dynamic else None)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
LOGGER.info(f'{prefix} simplifier failure: {e}')
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
LOGGER.info(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
except Exception as e:
LOGGER.info(f'{prefix} export failure: {e}')
def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
# CoreML export
ct_model = None
try:
check_requirements(('coremltools',))
import coremltools as ct
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
f = file.with_suffix('.mlmodel')
model.train() # CoreML exports should be placed in model.train() mode
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
ct_model.save(f)
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
return ct_model
def export_saved_model(model, im, file, dynamic,
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
# TensorFlow saved_model export
keras_model = None
try:
import tensorflow as tf
from tensorflow import keras
from models.tf import TFDetect, TFModel
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
f = str(file).replace('.pt', '_saved_model')
batch_size, ch, *imgsz = list(im.shape) # BCHW
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
keras_model = keras.Model(inputs=inputs, outputs=outputs)
keras_model.trainable = False
keras_model.summary()
keras_model.save(f, save_format='tf')
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
return keras_model
def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
# TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
try:
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
f = file.with_suffix('.pb')
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(m)
frozen_func.graph.as_graph_def()
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
# TensorFlow Lite export
try:
import tensorflow as tf
from models.tf import representative_dataset_gen
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
batch_size, ch, *imgsz = list(im.shape) # BCHW
f = str(file).replace('.pt', '-fp16.tflite')
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
converter.target_spec.supported_types = [tf.float16]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
if int8:
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.target_spec.supported_types = []
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.experimental_new_quantizer = False
f = str(file).replace('.pt', '-int8.tflite')
tflite_model = converter.convert()
open(f, "wb").write(tflite_model)
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
# TensorFlow.js export
try:
check_requirements(('tensorflowjs',))
import re
import tensorflowjs as tfjs
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
f = str(file).replace('.pt', '_web_model') # js dir
f_pb = file.with_suffix('.pb') # *.pb path
f_json = f + '/model.json' # *.json path
cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
subprocess.run(cmd, shell=True)
json = open(f_json).read()
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
subst = re.sub(
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}}}',
r'{"outputs": {"Identity": {"name": "Identity"}, '
r'"Identity_1": {"name": "Identity_1"}, '
r'"Identity_2": {"name": "Identity_2"}, '
r'"Identity_3": {"name": "Identity_3"}}}',
json)
j.write(subst)
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
@torch.no_grad()
def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
weights=ROOT / 'yolov3.pt', # weights path
imgsz=(640, 640), # image (height, width)
batch_size=1, # batch size
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
include=('torchscript', 'onnx', 'coreml'), # include formats
half=False, # FP16 half-precision export
inplace=False, # set Detect() inplace=True
train=False, # model.train() mode
optimize=False, # TorchScript: optimize for mobile
int8=False, # CoreML/TF INT8 quantization
dynamic=False, # ONNX/TF: dynamic axes
simplify=False, # ONNX: simplify model
opset=12, # ONNX: opset version
topk_per_class=100, # TF.js NMS: topk per class to keep
topk_all=100, # TF.js NMS: topk for all classes to keep
iou_thres=0.45, # TF.js NMS: IoU threshold
conf_thres=0.25 # TF.js NMS: confidence threshold
):
t = time.time()
include = [x.lower() for x in include]
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)
# Load PyTorch model
device = select_device(device)
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
nc, names = model.nc, model.names # number of classes, class names
# Input
gs = int(max(model.stride)) # grid size (max stride)
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
# Update model
if half:
im, model = im.half(), model.half() # to FP16
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
for k, m in model.named_modules():
if isinstance(m, Conv): # assign export-friendly activations
if isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, Detect):
m.inplace = inplace
m.onnx_dynamic = dynamic
# m.forward = m.forward_export # assign forward (optional)
for _ in range(2):
y = model(im) # dry runs
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
# Exports
if 'torchscript' in include:
export_torchscript(model, im, file, optimize)
if 'onnx' in include:
export_onnx(model, im, file, opset, train, dynamic, simplify)
if 'coreml' in include:
export_coreml(model, im, file)
# TensorFlow Exports
if any(tf_exports):
pb, tflite, tfjs = tf_exports[1:]
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs,
topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres,
iou_thres=iou_thres) # keras model
if pb or tfjs: # pb prerequisite to tfjs
export_pb(model, im, file)
if tflite:
export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
if tfjs:
export_tfjs(model, im, file)
# Finish
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f'\nVisualize with https://netron.app')
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--weights', type=str, default=ROOT / 'yolov3.pt', help='weights path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set YOLOv3 Detect() inplace=True')
parser.add_argument('--train', action='store_true', help='model.train() mode')
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
parser.add_argument('--include', nargs='+',
default=['torchscript', 'onnx'],
help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
opt = parser.parse_args()
print_args(FILE.stem, opt)
return opt
def main(opt):
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

View File

@ -1,56 +1,61 @@
"""YOLOv3 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov3/
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
Usage:
import torch
model = torch.hub.load('ultralytics/yolov3', 'yolov3_tiny')
model = torch.hub.load('ultralytics/yolov3', 'yolov3')
"""
import torch
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
"""Creates a specified YOLOv3 model
"""Creates a specified model
Arguments:
name (str): name of model, i.e. 'yolov3'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
autoshape (bool): apply YOLOv3 .autoshape() wrapper to model
autoshape (bool): apply .autoshape() wrapper to model
verbose (bool): print all information to screen
device (str, torch.device, None): device to use for model parameters
Returns:
YOLOv3 pytorch model
pytorch model
"""
from pathlib import Path
from models.yolo import Model, attempt_load
from utils.general import check_requirements, set_logging
from utils.google_utils import attempt_download
from models.experimental import attempt_load
from models.yolo import Model
from utils.downloads import attempt_download
from utils.general import check_requirements, intersect_dicts, set_logging
from utils.torch_utils import select_device
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
file = Path(__file__).resolve()
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
set_logging(verbose=verbose)
fname = Path(name).with_suffix('.pt') # checkpoint filename
save_dir = Path('') if str(name).endswith('.pt') else file.parent
path = (save_dir / name).with_suffix('.pt') # checkpoint path
try:
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
if pretrained and channels == 3 and classes == 80:
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
model = attempt_load(path, map_location=device) # download/load FP32 model
else:
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
model = Model(cfg, channels, classes) # create model
if pretrained:
ckpt = torch.load(attempt_download(fname), map_location=torch.device('cpu')) # load
msd = model.state_dict() # model state_dict
ckpt = torch.load(attempt_download(path), map_location=device) # load
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
model.load_state_dict(csd, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
if autoshape:
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') if device is None else torch.device(device)
return model.to(device)
except Exception as e:
@ -60,7 +65,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
# YOLOv3 custom or local model
# custom or local model
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
@ -68,26 +73,31 @@ def yolov3(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True
# YOLOv3 model https://github.com/ultralytics/yolov3
return _create('yolov3', pretrained, channels, classes, autoshape, verbose, device)
def yolov3_spp(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
# YOLOv3-SPP model https://github.com/ultralytics/yolov3
return _create('yolov3-spp', pretrained, channels, classes, autoshape, verbose, device)
def yolov3_tiny(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
# YOLOv3-tiny model https://github.com/ultralytics/yolov3
return _create('yolov3-tiny', pretrained, channels, classes, autoshape, verbose, device)
if __name__ == '__main__':
model = _create(name='yolov3', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
model = _create(name='yolov3-tiny', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
# model = custom(path='path/to/model.pt') # custom
# Verify inference
from pathlib import Path
import cv2
import numpy as np
from PIL import Image
imgs = ['data/images/zidane.jpg', # filename
'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI
Path('data/images/zidane.jpg'), # Path
'https://ultralytics.com/images/zidane.jpg', # URI
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
Image.open('data/images/bus.jpg'), # PIL
np.zeros((320, 640, 3))] # numpy

View File

@ -1,9 +1,16 @@
# YOLOv3 common modules
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Common modules
"""
import json
import math
import platform
import warnings
from copy import copy
from pathlib import Path
import cv2
import numpy as np
import pandas as pd
import requests
@ -12,10 +19,11 @@ import torch.nn as nn
from PIL import Image
from torch.cuda import amp
from utils.datasets import letterbox
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box
from utils.plots import colors, plot_one_box
from utils.torch_utils import time_synchronized
from utils.datasets import exif_transpose, letterbox
from utils.general import (LOGGER, check_requirements, check_suffix, colorstr, increment_path, make_divisible,
non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import time_sync
def autopad(k, p=None): # kernel, padding
@ -25,26 +33,27 @@ def autopad(k, p=None): # kernel, padding
return p
def DWConv(c1, c2, k=1, s=1, act=True):
# Depthwise convolution
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Conv, self).__init__()
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.LeakyReLU(0.1) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def fuseforward(self, x):
def forward_fuse(self, x):
return self.act(self.conv(x))
class DWConv(Conv):
# Depth-wise convolution class
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
class TransformerLayer(nn.Module):
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
def __init__(self, c, num_heads):
@ -70,31 +79,21 @@ class TransformerBlock(nn.Module):
if c1 != c2:
self.conv = Conv(c1, c2)
self.linear = nn.Linear(c2, c2) # learnable position embedding
self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
self.c2 = c2
def forward(self, x):
if self.conv is not None:
x = self.conv(x)
b, _, w, h = x.shape
p = x.flatten(2)
p = p.unsqueeze(0)
p = p.transpose(0, 3)
p = p.squeeze(3)
e = self.linear(p)
x = p + e
x = self.tr(x)
x = x.unsqueeze(3)
x = x.transpose(0, 3)
x = x.reshape(b, self.c2, w, h)
return x
p = x.flatten(2).unsqueeze(0).transpose(0, 3).squeeze(3)
return self.tr(p + self.linear(p)).unsqueeze(3).transpose(0, 3).reshape(b, self.c2, w, h)
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(Bottleneck, self).__init__()
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
@ -107,15 +106,15 @@ class Bottleneck(nn.Module):
class BottleneckCSP(nn.Module):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(BottleneckCSP, self).__init__()
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
self.act = nn.SiLU()
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
@ -126,12 +125,12 @@ class BottleneckCSP(nn.Module):
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(C3, self).__init__()
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
def forward(self, x):
@ -146,10 +145,26 @@ class C3TR(C3):
self.m = TransformerBlock(c_, c_, 4, n)
class C3SPP(C3):
# C3 module with SPP()
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = SPP(c_, c_, k)
class C3Ghost(C3):
# C3 module with GhostBottleneck()
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
class SPP(nn.Module):
# Spatial pyramid pooling layer used in YOLOv3-SPP
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
def __init__(self, c1, c2, k=(5, 9, 13)):
super(SPP, self).__init__()
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
@ -157,13 +172,33 @@ class SPP(nn.Module):
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
class SPPF(nn.Module):
# Spatial Pyramid Pooling - Fast (SPPF) layer for by Glenn Jocher
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
class Focus(nn.Module):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Focus, self).__init__()
super().__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
# self.contract = Contract(gain=2)
@ -172,6 +207,34 @@ class Focus(nn.Module):
# return self.conv(self.contract(x))
class GhostConv(nn.Module):
# Ghost Convolution https://github.com/huawei-noah/ghostnet
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
super().__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, None, g, act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
def forward(self, x):
y = self.cv1(x)
return torch.cat([y, self.cv2(y)], 1)
class GhostBottleneck(nn.Module):
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
super().__init__()
c_ = c2 // 2
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
def forward(self, x):
return self.conv(x) + self.shortcut(x)
class Contract(nn.Module):
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
def __init__(self, gain=2):
@ -179,11 +242,11 @@ class Contract(nn.Module):
self.gain = gain
def forward(self, x):
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
s = self.gain
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
class Expand(nn.Module):
@ -193,64 +256,183 @@ class Expand(nn.Module):
self.gain = gain
def forward(self, x):
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
s = self.gain
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
class Concat(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, dimension=1):
super(Concat, self).__init__()
super().__init__()
self.d = dimension
def forward(self, x):
return torch.cat(x, self.d)
class NMS(nn.Module):
# Non-Maximum Suppression (NMS) module
conf = 0.25 # confidence threshold
iou = 0.45 # IoU threshold
classes = None # (optional list) filter by class
max_det = 1000 # maximum number of detections per image
class DetectMultiBackend(nn.Module):
# MultiBackend class for python inference on various backends
def __init__(self, weights='yolov3.pt', device=None, dnn=True):
# Usage:
# PyTorch: weights = *.pt
# TorchScript: *.torchscript.pt
# CoreML: *.mlmodel
# TensorFlow: *_saved_model
# TensorFlow: *.pb
# TensorFlow Lite: *.tflite
# ONNX Runtime: *.onnx
# OpenCV DNN: *.onnx with dnn=True
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
suffix, suffixes = Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', '', '.mlmodel']
check_suffix(w, suffixes) # check weights have acceptable suffix
pt, onnx, tflite, pb, saved_model, coreml = (suffix == x for x in suffixes) # backend booleans
jit = pt and 'torchscript' in w.lower()
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
def __init__(self):
super(NMS, self).__init__()
if jit: # TorchScript
LOGGER.info(f'Loading {w} for TorchScript inference...')
extra_files = {'config.txt': ''} # model metadata
model = torch.jit.load(w, _extra_files=extra_files)
if extra_files['config.txt']:
d = json.loads(extra_files['config.txt']) # extra_files dict
stride, names = int(d['stride']), d['names']
elif pt: # PyTorch
from models.experimental import attempt_load # scoped to avoid circular import
model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device)
stride = int(model.stride.max()) # model stride
names = model.module.names if hasattr(model, 'module') else model.names # get class names
elif coreml: # CoreML *.mlmodel
import coremltools as ct
model = ct.models.MLModel(w)
elif dnn: # ONNX OpenCV DNN
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
check_requirements(('opencv-python>=4.5.4',))
net = cv2.dnn.readNetFromONNX(w)
elif onnx: # ONNX Runtime
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
check_requirements(('onnx', 'onnxruntime-gpu' if torch.has_cuda else 'onnxruntime'))
import onnxruntime
session = onnxruntime.InferenceSession(w, None)
else: # TensorFlow model (TFLite, pb, saved_model)
import tensorflow as tf
if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
def wrap_frozen_graph(gd, inputs, outputs):
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs),
tf.nest.map_structure(x.graph.as_graph_element, outputs))
def forward(self, x):
return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det)
LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...')
graph_def = tf.Graph().as_graph_def()
graph_def.ParseFromString(open(w, 'rb').read())
frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0")
elif saved_model:
LOGGER.info(f'Loading {w} for TensorFlow saved_model inference...')
model = tf.keras.models.load_model(w)
elif tflite: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
if 'edgetpu' in w.lower():
LOGGER.info(f'Loading {w} for TensorFlow Edge TPU inference...')
import tflite_runtime.interpreter as tfli
delegate = {'Linux': 'libedgetpu.so.1', # install https://coral.ai/software/#edgetpu-runtime
'Darwin': 'libedgetpu.1.dylib',
'Windows': 'edgetpu.dll'}[platform.system()]
interpreter = tfli.Interpreter(model_path=w, experimental_delegates=[tfli.load_delegate(delegate)])
else:
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
self.__dict__.update(locals()) # assign all variables to self
def forward(self, im, augment=False, visualize=False, val=False):
# MultiBackend inference
b, ch, h, w = im.shape # batch, channel, height, width
if self.pt: # PyTorch
y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
return y if val else y[0]
elif self.coreml: # CoreML *.mlmodel
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
im = Image.fromarray((im[0] * 255).astype('uint8'))
# im = im.resize((192, 320), Image.ANTIALIAS)
y = self.model.predict({'image': im}) # coordinates are xywh normalized
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
elif self.onnx: # ONNX
im = im.cpu().numpy() # torch to numpy
if self.dnn: # ONNX OpenCV DNN
self.net.setInput(im)
y = self.net.forward()
else: # ONNX Runtime
y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
else: # TensorFlow model (TFLite, pb, saved_model)
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.pb:
y = self.frozen_func(x=self.tf.constant(im)).numpy()
elif self.saved_model:
y = self.model(im, training=False).numpy()
elif self.tflite:
input, output = self.input_details[0], self.output_details[0]
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
if int8:
scale, zero_point = input['quantization']
im = (im / scale + zero_point).astype(np.uint8) # de-scale
self.interpreter.set_tensor(input['index'], im)
self.interpreter.invoke()
y = self.interpreter.get_tensor(output['index'])
if int8:
scale, zero_point = output['quantization']
y = (y.astype(np.float32) - zero_point) * scale # re-scale
y[..., 0] *= w # x
y[..., 1] *= h # y
y[..., 2] *= w # w
y[..., 3] *= h # h
y = torch.tensor(y)
return (y, []) if val else y
class AutoShape(nn.Module):
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
conf = 0.25 # NMS confidence threshold
iou = 0.45 # NMS IoU threshold
classes = None # (optional list) filter by class
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
multi_label = False # NMS multiple labels per box
max_det = 1000 # maximum number of detections per image
def __init__(self, model):
super(AutoShape, self).__init__()
super().__init__()
self.model = model.eval()
def autoshape(self):
print('AutoShape already enabled, skipping... ') # model already converted to model.autoshape()
LOGGER.info('AutoShape already enabled, skipping... ') # model already converted to model.autoshape()
return self
def _apply(self, fn):
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
self = super()._apply(fn)
m = self.model.model[-1] # Detect()
m.stride = fn(m.stride)
m.grid = list(map(fn, m.grid))
if isinstance(m.anchor_grid, list):
m.anchor_grid = list(map(fn, m.anchor_grid))
return self
@torch.no_grad()
def forward(self, imgs, size=640, augment=False, profile=False):
# Inference from various sources. For height=640, width=1280, RGB images example inputs are:
# filename: imgs = 'data/images/zidane.jpg'
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
# file: imgs = 'data/images/zidane.jpg' # str or PosixPath
# URI: = 'https://ultralytics.com/images/zidane.jpg'
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
# PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
# numpy: = np.zeros((640,1280,3)) # HWC
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
t = [time_synchronized()]
t = [time_sync()]
p = next(self.model.parameters()) # for device and type
if isinstance(imgs, torch.Tensor): # torch
with amp.autocast(enabled=p.device.type != 'cpu'):
@ -261,14 +443,15 @@ class AutoShape(nn.Module):
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
for i, im in enumerate(imgs):
f = f'image{i}' # filename
if isinstance(im, str): # filename or uri
im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
if isinstance(im, (str, Path)): # filename or uri
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
im = np.asarray(exif_transpose(im))
elif isinstance(im, Image.Image): # PIL Image
im, f = np.asarray(im), getattr(im, 'filename', f) or f
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
files.append(Path(f).with_suffix('.jpg').name)
if im.shape[0] < 5: # image in CHW
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
s = im.shape[:2] # HWC
shape0.append(s) # image shape
g = (size / max(s)) # gain
@ -278,29 +461,30 @@ class AutoShape(nn.Module):
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
t.append(time_synchronized())
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
t.append(time_sync())
with amp.autocast(enabled=p.device.type != 'cpu'):
# Inference
y = self.model(x, augment, profile)[0] # forward
t.append(time_synchronized())
t.append(time_sync())
# Post-process
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes,
multi_label=self.multi_label, max_det=self.max_det) # NMS
for i in range(n):
scale_coords(shape1, y[i][:, :4], shape0[i])
t.append(time_synchronized())
t.append(time_sync())
return Detections(imgs, y, files, t, self.names, x.shape)
class Detections:
# detections class for YOLOv3 inference results
# detections class for inference results
def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
super(Detections, self).__init__()
super().__init__()
d = pred[0].device # device
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
self.imgs = imgs # list of images as numpy arrays
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
self.names = names # class names
@ -314,47 +498,59 @@ class Detections:
self.s = shape # inference BCHW shape
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
crops = []
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '
if pred is not None:
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
if pred.shape[0]:
for c in pred[:, -1].unique():
n = (pred[:, -1] == c).sum() # detections per class
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
if show or save or render or crop:
for *box, conf, cls in pred: # xyxy, confidence, class
annotator = Annotator(im, example=str(self.names))
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
label = f'{self.names[int(cls)]} {conf:.2f}'
if crop:
save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
'im': save_one_box(box, im, file=file, save=save)})
else: # all others
plot_one_box(box, im, label=label, color=colors(cls))
annotator.box_label(box, label, color=colors(cls))
im = annotator.im
else:
s += '(no detections)'
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
if pprint:
print(str.rstrip(', '))
LOGGER.info(s.rstrip(', '))
if show:
im.show(self.files[i]) # show
if save:
f = self.files[i]
im.save(save_dir / f) # save
print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
if i == self.n - 1:
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
if render:
self.imgs[i] = np.asarray(im)
if crop:
if save:
LOGGER.info(f'Saved results to {save_dir}\n')
return crops
def print(self):
self.display(pprint=True) # print results
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
self.t)
def show(self):
self.display(show=True) # show results
def save(self, save_dir='runs/hub/exp'):
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir
def save(self, save_dir='runs/detect/exp'):
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
self.display(save=True, save_dir=save_dir) # save results
def crop(self, save_dir='runs/hub/exp'):
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir
self.display(crop=True, save_dir=save_dir) # crop results
print(f'Saved results to {save_dir}\n')
def crop(self, save=True, save_dir='runs/detect/exp'):
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
return self.display(crop=True, save=save, save_dir=save_dir) # crop results
def render(self):
self.display(render=True) # render results
@ -385,7 +581,7 @@ class Detections:
class Classify(nn.Module):
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
super(Classify, self).__init__()
super().__init__()
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
self.flat = nn.Flatten()

View File

@ -1,18 +1,22 @@
# YOLOv3 experimental modules
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Experimental modules
"""
import math
import numpy as np
import torch
import torch.nn as nn
from models.common import Conv, DWConv
from utils.google_utils import attempt_download
from models.common import Conv
from utils.downloads import attempt_download
class CrossConv(nn.Module):
# Cross Convolution Downsample
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
super(CrossConv, self).__init__()
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, (1, k), (1, s))
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
@ -25,11 +29,11 @@ class CrossConv(nn.Module):
class Sum(nn.Module):
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, n, weight=False): # n: number of inputs
super(Sum, self).__init__()
super().__init__()
self.weight = weight # apply weights boolean
self.iter = range(n - 1) # iter object
if weight:
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
def forward(self, x):
y = x[0] # no weight
@ -43,86 +47,66 @@ class Sum(nn.Module):
return y
class GhostConv(nn.Module):
# Ghost Convolution https://github.com/huawei-noah/ghostnet
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
super(GhostConv, self).__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, None, g, act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
def forward(self, x):
y = self.cv1(x)
return torch.cat([y, self.cv2(y)], 1)
class GhostBottleneck(nn.Module):
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
super(GhostBottleneck, self).__init__()
c_ = c2 // 2
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
def forward(self, x):
return self.conv(x) + self.shortcut(x)
class MixConv2d(nn.Module):
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
super(MixConv2d, self).__init__()
groups = len(k)
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
super().__init__()
n = len(k) # number of convolutions
if equal_ch: # equal c_ per group
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
else: # equal weight.numel() per group
b = [c2] + [0] * groups
a = np.eye(groups + 1, groups, k=-1)
b = [c2] + [0] * n
a = np.eye(n + 1, n, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
self.m = nn.ModuleList(
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
self.bn = nn.BatchNorm2d(c2)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.act = nn.SiLU()
def forward(self, x):
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
class Ensemble(nn.ModuleList):
# Ensemble of models
def __init__(self):
super(Ensemble, self).__init__()
super().__init__()
def forward(self, x, augment=False):
def forward(self, x, augment=False, profile=False, visualize=False):
y = []
for module in self:
y.append(module(x, augment)[0])
y.append(module(x, augment, profile, visualize)[0])
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 1) # nms ensemble
return y, None # inference, train output
def attempt_load(weights, map_location=None, inplace=True):
def attempt_load(weights, map_location=None, inplace=True, fuse=True):
from models.yolo import Detect, Model
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(attempt_download(w), map_location=map_location) # load
if fuse:
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
else:
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval()) # without layer fuse
# Compatibility updates
for m in model.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
m.inplace = inplace # pytorch 1.7.0 compatibility
if type(m) is Detect:
if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility
delattr(m, 'anchor_grid')
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
elif type(m) is Conv:
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility

View File

@ -1,145 +0,0 @@
"""Exports a YOLOv3 *.pt model to TorchScript, ONNX, CoreML formats
Usage:
$ python path/to/models/export.py --weights yolov3.pt --img 640 --batch 1
"""
import argparse
import sys
import time
from pathlib import Path
sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
import models
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
from utils.torch_utils import select_device
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov3.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set YOLOv3 Detect() inplace=True')
parser.add_argument('--train', action='store_true', help='model.train() mode')
parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
opt.include = [x.lower() for x in opt.include]
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
model = attempt_load(opt.weights, map_location=device) # load FP32 model
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
# Update model
if opt.half:
img, model = img.half(), model.half() # to FP16
if opt.train:
model.train() # training mode (no grid construction in Detect layer)
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, models.yolo.Detect):
m.inplace = opt.inplace
m.onnx_dynamic = opt.dynamic
# m.forward = m.forward_export # assign forward (optional)
for _ in range(2):
y = model(img) # dry runs
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
# TorchScript export -----------------------------------------------------------------------------------------------
if 'torchscript' in opt.include or 'coreml' in opt.include:
prefix = colorstr('TorchScript:')
try:
print(f'\n{prefix} starting export with torch {torch.__version__}...')
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
ts = torch.jit.trace(model, img, strict=False)
(optimize_for_mobile(ts) if opt.optimize else ts).save(f)
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'{prefix} export failure: {e}')
# ONNX export ------------------------------------------------------------------------------------------------------
if 'onnx' in opt.include:
prefix = colorstr('ONNX:')
try:
import onnx
print(f'{prefix} starting export with onnx {onnx.__version__}...')
f = opt.weights.replace('.pt', '.onnx') # filename
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, input_names=['images'],
training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not opt.train,
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
# Simplify
if opt.simplify:
try:
check_requirements(['onnx-simplifier'])
import onnxsim
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=opt.dynamic,
input_shapes={'images': list(img.shape)} if opt.dynamic else None)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
print(f'{prefix} simplifier failure: {e}')
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'{prefix} export failure: {e}')
# CoreML export ----------------------------------------------------------------------------------------------------
if 'coreml' in opt.include:
prefix = colorstr('CoreML:')
try:
import coremltools as ct
print(f'{prefix} starting export with coremltools {ct.__version__}...')
assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'{prefix} export failure: {e}')
# Finish
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')

465
models/tf.py Normal file
View File

@ -0,0 +1,465 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
TensorFlow, Keras and TFLite versions of
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
Usage:
$ python models/tf.py --weights yolov3.pt
Export:
$ python path/to/export.py --weights yolov3.pt --include saved_model pb tflite tfjs
"""
import argparse
import logging
import sys
from copy import deepcopy
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
from tensorflow import keras
from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, Concat, Conv, DWConv, Focus, autopad
from models.experimental import CrossConv, MixConv2d, attempt_load
from models.yolo import Detect
from utils.activations import SiLU
from utils.general import LOGGER, make_divisible, print_args
class TFBN(keras.layers.Layer):
# TensorFlow BatchNormalization wrapper
def __init__(self, w=None):
super().__init__()
self.bn = keras.layers.BatchNormalization(
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
epsilon=w.eps)
def call(self, inputs):
return self.bn(inputs)
class TFPad(keras.layers.Layer):
def __init__(self, pad):
super().__init__()
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
def call(self, inputs):
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
class TFConv(keras.layers.Layer):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
# ch_in, ch_out, weights, kernel, stride, padding, groups
super().__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
conv = keras.layers.Conv2D(
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
# activations
if isinstance(w.act, nn.LeakyReLU):
self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
elif isinstance(w.act, nn.Hardswish):
self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
elif isinstance(w.act, (nn.SiLU, SiLU)):
self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
else:
raise Exception(f'no matching TensorFlow activation found for {w.act}')
def call(self, inputs):
return self.act(self.bn(self.conv(inputs)))
class TFFocus(keras.layers.Layer):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
# ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
# inputs = inputs / 255 # normalize 0-255 to 0-1
return self.conv(tf.concat([inputs[:, ::2, ::2, :],
inputs[:, 1::2, ::2, :],
inputs[:, ::2, 1::2, :],
inputs[:, 1::2, 1::2, :]], 3))
class TFBottleneck(keras.layers.Layer):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
self.add = shortcut and c1 == c2
def call(self, inputs):
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
class TFConv2d(keras.layers.Layer):
# Substitution for PyTorch nn.Conv2D
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
super().__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
self.conv = keras.layers.Conv2D(
c2, k, s, 'VALID', use_bias=bias,
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
def call(self, inputs):
return self.conv(inputs)
class TFBottleneckCSP(keras.layers.Layer):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
# ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
self.bn = TFBN(w.bn)
self.act = lambda x: keras.activations.relu(x, alpha=0.1)
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
def call(self, inputs):
y1 = self.cv3(self.m(self.cv1(inputs)))
y2 = self.cv2(inputs)
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
class TFC3(keras.layers.Layer):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
# ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
def call(self, inputs):
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
class TFSPP(keras.layers.Layer):
# Spatial pyramid pooling layer used in YOLOv3-SPP
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
def call(self, inputs):
x = self.cv1(inputs)
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
class TFSPPF(keras.layers.Layer):
# Spatial pyramid pooling-Fast layer
def __init__(self, c1, c2, k=5, w=None):
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
def call(self, inputs):
x = self.cv1(inputs)
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
class TFDetect(keras.layers.Layer):
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
super().__init__()
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [tf.zeros(1)] * self.nl # init grid
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]),
[self.nl, 1, -1, 1, 2])
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
self.training = False # set to False after building model
self.imgsz = imgsz
for i in range(self.nl):
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
self.grid[i] = self._make_grid(nx, ny)
def call(self, inputs):
z = [] # inference output
x = []
for i in range(self.nl):
x.append(self.m[i](inputs[i]))
# x(bs,20,20,255) to x(bs,3,20,20,85)
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
if not self.training: # inference
y = tf.sigmoid(x[i])
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
# Normalize xywh to 0-1 to reduce calibration error
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
y = tf.concat([xy, wh, y[..., 4:]], -1)
z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
return x if self.training else (tf.concat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
class TFUpsample(keras.layers.Layer):
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
super().__init__()
assert scale_factor == 2, "scale_factor must be 2"
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
# with default arguments: align_corners=False, half_pixel_centers=False
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
# size=(x.shape[1] * 2, x.shape[2] * 2))
def call(self, inputs):
return self.upsample(inputs)
class TFConcat(keras.layers.Layer):
def __init__(self, dimension=1, w=None):
super().__init__()
assert dimension == 1, "convert only NCHW to NHWC concat"
self.d = 3
def call(self, inputs):
return tf.concat(inputs, self.d)
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m_str = m
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except NameError:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
c1, c2 = ch[f], args[0]
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3]:
args.insert(2, n)
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
elif m is Detect:
args.append([ch[x + 1] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
args.append(imgsz)
else:
c2 = ch[f]
tf_m = eval('TF' + m_str.replace('nn.', ''))
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
else tf_m(*args, w=model.model[i]) # module
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum(x.numel() for x in torch_m_.parameters()) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
ch.append(c2)
return keras.Sequential(layers), sorted(save)
class TFModel:
def __init__(self, cfg='yolov3.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
super().__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg) as f:
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
# Define model
if nc and nc != self.yaml['nc']:
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
self.yaml['nc'] = nc # override yaml value
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
conf_thres=0.25):
y = [] # outputs
x = inputs
for i, m in enumerate(self.model.layers):
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
x = m(x) # run
y.append(x if m.i in self.savelist else None) # save output
# Add TensorFlow NMS
if tf_nms:
boxes = self._xywh2xyxy(x[0][..., :4])
probs = x[0][:, :, 4:5]
classes = x[0][:, :, 5:]
scores = probs * classes
if agnostic_nms:
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
return nms, x[1]
else:
boxes = tf.expand_dims(boxes, 2)
nms = tf.image.combined_non_max_suppression(
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
return nms, x[1]
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
# x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
# xywh = x[..., :4] # x(6300,4) boxes
# conf = x[..., 4:5] # x(6300,1) confidences
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
# return tf.concat([conf, cls, xywh], 1)
@staticmethod
def _xywh2xyxy(xywh):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
class AgnosticNMS(keras.layers.Layer):
# TF Agnostic NMS
def call(self, input, topk_all, iou_thres, conf_thres):
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input,
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
name='agnostic_nms')
@staticmethod
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
boxes, classes, scores = x
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
scores_inp = tf.reduce_max(scores, -1)
selected_inds = tf.image.non_max_suppression(
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
selected_boxes = tf.gather(boxes, selected_inds)
padded_boxes = tf.pad(selected_boxes,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
mode="CONSTANT", constant_values=0.0)
selected_scores = tf.gather(scores_inp, selected_inds)
padded_scores = tf.pad(selected_scores,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
mode="CONSTANT", constant_values=-1.0)
selected_classes = tf.gather(class_inds, selected_inds)
padded_classes = tf.pad(selected_classes,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
mode="CONSTANT", constant_values=-1.0)
valid_detections = tf.shape(selected_inds)[0]
return padded_boxes, padded_scores, padded_classes, valid_detections
def representative_dataset_gen(dataset, ncalib=100):
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
input = np.transpose(img, [1, 2, 0])
input = np.expand_dims(input, axis=0).astype(np.float32)
input /= 255
yield [input]
if n >= ncalib:
break
def run(weights=ROOT / 'yolov3.pt', # weights path
imgsz=(640, 640), # inference size h,w
batch_size=1, # batch size
dynamic=False, # dynamic batch size
):
# PyTorch model
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
y = model(im) # inference
model.info()
# TensorFlow model
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
y = tf_model.predict(im) # inference
# Keras model
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
keras_model.summary()
LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / 'yolov3.pt', help='weights path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(FILE.stem, opt)
return opt
def main(opt):
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

View File

@ -1,27 +1,32 @@
"""YOLOv3-specific modules
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
YOLO-specific modules
Usage:
$ python path/to/models/yolo.py --cfg yolov3.yaml
"""
import argparse
import logging
import sys
from copy import deepcopy
from pathlib import Path
sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
logger = logging.getLogger(__name__)
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
from models.common import *
from models.experimental import *
from utils.autoanchor import check_anchor_order
from utils.general import make_divisible, check_file, set_logging
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
select_device, copy_attr
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import (copy_attr, fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device,
time_sync)
try:
import thop # for FLOPS computation
import thop # for FLOPs computation
except ImportError:
thop = None
@ -31,20 +36,18 @@ class Detect(nn.Module):
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super(Detect, self).__init__()
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
@ -52,50 +55,55 @@ class Detect(nn.Module):
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
else: # for on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
else:
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
return grid, anchor_grid
class Model(nn.Module):
def __init__(self, cfg='yolov3.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
super(Model, self).__init__()
super().__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg) as f:
with open(cfg, encoding='ascii', errors='ignore') as f:
self.yaml = yaml.safe_load(f) # model dict
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
if nc and nc != self.yaml['nc']:
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml['nc'] = nc # override yaml value
if anchors:
logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
self.yaml['anchors'] = round(anchors) # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
self.inplace = self.yaml.get('inplace', True)
# logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
# Build strides, anchors
m = self.model[-1] # Detect()
@ -107,53 +115,42 @@ class Model(nn.Module):
check_anchor_order(m)
self.stride = m.stride
self._initialize_biases() # only run once
# logger.info('Strides: %s' % m.stride.tolist())
# Init weights, biases
initialize_weights(self)
self.info()
logger.info('')
LOGGER.info('')
def forward(self, x, augment=False, profile=False):
def forward(self, x, augment=False, profile=False, visualize=False):
if augment:
return self.forward_augment(x) # augmented inference, None
else:
return self.forward_once(x, profile) # single-scale inference, train
return self._forward_augment(x) # augmented inference, None
return self._forward_once(x, profile, visualize) # single-scale inference, train
def forward_augment(self, x):
def _forward_augment(self, x):
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self.forward_once(xi)[0] # forward
yi = self._forward_once(xi)[0] # forward
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi = self._descale_pred(yi, fi, si, img_size)
y.append(yi)
y = self._clip_augmented(y) # clip augmented tails
return torch.cat(y, 1), None # augmented inference, train
def forward_once(self, x, profile=False):
def _forward_once(self, x, profile=False, visualize=False):
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
t = time_synchronized()
for _ in range(10):
_ = m(x)
dt.append((time_synchronized() - t) * 100)
if m == self.model[0]:
logger.info(f"{'time (ms)':>10s} {'GFLOPS':>10s} {'params':>10s} {'module'}")
logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if profile:
logger.info('%.1fms total' % sum(dt))
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
return x
def _descale_pred(self, p, flips, scale, img_size):
@ -173,6 +170,30 @@ class Model(nn.Module):
p = torch.cat((x, y, wh, p[..., 4:]), -1)
return p
def _clip_augmented(self, y):
# Clip augmented inference tails
nl = self.model[-1].nl # number of detection layers (P3-P5)
g = sum(4 ** x for x in range(nl)) # grid points
e = 1 # exclude layer count
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
y[0] = y[0][:, :-i] # large
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
y[-1] = y[-1][:, i:] # small
return y
def _profile_one_layer(self, m, x, dt):
c = isinstance(m, Detect) # is final layer, copy input as inplace fix
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
t = time_sync()
for _ in range(10):
m(x.copy() if c else x)
dt.append((time_sync() - t) * 100)
if m == self.model[0]:
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
if c:
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
# https://arxiv.org/abs/1708.02002 section 3.3
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
@ -180,47 +201,33 @@ class Model(nn.Module):
for mi, s in zip(m.m, m.stride): # from
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
def _print_biases(self):
m = self.model[-1] # Detect() module
for mi in m.m: # from
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
logger.info(
LOGGER.info(
('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
# def _print_weights(self):
# for m in self.model.modules():
# if type(m) is Bottleneck:
# logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
logger.info('Fusing layers... ')
LOGGER.info('Fusing layers... ')
for m in self.model.modules():
if type(m) is Conv and hasattr(m, 'bn'):
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, 'bn') # remove batchnorm
m.forward = m.fuseforward # update forward
m.forward = m.forward_fuse # update forward
self.info()
return self
def nms(self, mode=True): # add or remove NMS module
present = type(self.model[-1]) is NMS # last layer is NMS
if mode and not present:
logger.info('Adding NMS... ')
m = NMS() # module
m.f = -1 # from
m.i = self.model[-1].i + 1 # index
self.model.add_module(name='%s' % m.i, module=m) # add
self.eval()
elif not mode and present:
logger.info('Removing NMS... ')
self.model = self.model[:-1] # remove
return self
def autoshape(self): # add AutoShape module
logger.info('Adding AutoShape... ')
LOGGER.info('Adding AutoShape... ')
m = AutoShape(self) # wrap model
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
return m
@ -228,9 +235,20 @@ class Model(nn.Module):
def info(self, verbose=False, img_size=640): # print model information
model_info(self, verbose, img_size)
def _apply(self, fn):
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
self = super()._apply(fn)
m = self.model[-1] # Detect()
if isinstance(m, Detect):
m.stride = fn(m.stride)
m.grid = list(map(fn, m.grid))
if isinstance(m.anchor_grid, list):
m.anchor_grid = list(map(fn, m.anchor_grid))
return self
def parse_model(d, ch): # model_dict, input_channels(3)
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
@ -241,24 +259,24 @@ def parse_model(d, ch): # model_dict, input_channels(3)
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except:
except NameError:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
C3, C3TR]:
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3, C3TR]:
if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum([ch[x] for x in f])
c2 = sum(ch[x] for x in f)
elif m is Detect:
args.append([ch[x] for x in f])
if isinstance(args[1], int): # number of anchors
@ -270,11 +288,11 @@ def parse_model(d, ch): # model_dict, input_channels(3)
else:
c2 = ch[f]
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum([x.numel() for x in m_.parameters()]) # number params
np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
@ -285,11 +303,13 @@ def parse_model(d, ch): # model_dict, input_channels(3)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='yolov3.yaml', help='model.yaml')
parser.add_argument('--cfg', type=str, default='yolov3yaml', help='model.yaml')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--profile', action='store_true', help='profile model speed')
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file
set_logging()
opt.cfg = check_yaml(opt.cfg) # check YAML
print_args(FILE.stem, opt)
device = select_device(opt.device)
# Create model
@ -297,12 +317,20 @@ if __name__ == '__main__':
model.train()
# Profile
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 320, 320).to(device)
# y = model(img, profile=True)
if opt.profile:
img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
y = model(img, profile=True)
# Test all models
if opt.test:
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
try:
_ = Model(cfg)
except Exception as e:
print(f'Error in {cfg}: {e}')
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
# from torch.utils.tensorboard import SummaryWriter
# tb_writer = SummaryWriter('.')
# logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
# LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard

View File

@ -1,9 +1,9 @@
# parameters
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16

View File

@ -1,9 +1,9 @@
# parameters
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
# anchors
anchors:
- [10,14, 23,27, 37,58] # P4/16
- [81,82, 135,169, 344,319] # P5/32

View File

@ -1,9 +1,9 @@
# parameters
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16

View File

@ -1,30 +1,36 @@
# pip install -r requirements.txt
# base ----------------------------------------
# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0
# logging -------------------------------------
# Logging -------------------------------------
tensorboard>=2.4.1
# wandb
# plotting ------------------------------------
# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
pandas
# export --------------------------------------
# coremltools>=4.1
# onnx>=1.9.0
# scikit-learn==0.19.2 # for coreml quantization
# Export --------------------------------------
# coremltools>=4.1 # CoreML export
# onnx>=1.9.0 # ONNX export
# onnx-simplifier>=0.3.6 # ONNX simplifier
# scikit-learn==0.19.2 # CoreML quantization
# tensorflow>=2.4.1 # TFLite export
# tensorflowjs>=3.9.0 # TF.js export
# extras --------------------------------------
# Extras --------------------------------------
# albumentations>=1.0.3
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
pycocotools>=2.0 # COCO mAP
thop # FLOPS computation
# pycocotools>=2.0 # COCO mAP
# roboflow
thop # FLOPs computation

51
setup.cfg Normal file
View File

@ -0,0 +1,51 @@
# Project-wide configuration file, can be used for package metadata and other toll configurations
# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments
[metadata]
license_file = LICENSE
description-file = README.md
[tool:pytest]
norecursedirs =
.git
dist
build
addopts =
--doctest-modules
--durations=25
--color=yes
[flake8]
max-line-length = 120
exclude = .tox,*.egg,build,temp
select = E,W,F
doctests = True
verbose = 2
# https://pep8.readthedocs.io/en/latest/intro.html#error-codes
format = pylint
# see: https://www.flake8rules.com/
ignore =
E731 # Do not assign a lambda expression, use a def
F405
E402
F841
E741
F821
E722
F401
W504
E127
W504
E231
E501
F403
E302
F541
[isort]
# https://pycqa.github.io/isort/docs/configuration/options.html
line_length = 120
multi_line_output = 0

349
test.py
View File

@ -1,349 +0,0 @@
import argparse
import json
import os
from pathlib import Path
from threading import Thread
import numpy as np
import torch
import yaml
from tqdm import tqdm
from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils.metrics import ap_per_class, ConfusionMatrix
from utils.plots import plot_images, output_to_target, plot_study_txt
from utils.torch_utils import select_device, time_synchronized
@torch.no_grad()
def test(data,
weights=None,
batch_size=32,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6, # for NMS
save_json=False,
single_cls=False,
augment=False,
verbose=False,
model=None,
dataloader=None,
save_dir=Path(''), # for saving images
save_txt=False, # for auto-labelling
save_hybrid=False, # for hybrid auto-labelling
save_conf=False, # save auto-label confidences
plots=True,
wandb_logger=None,
compute_loss=None,
half_precision=True,
is_coco=False,
opt=None):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device
else: # called directly
set_logging()
device = select_device(opt.device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check img_size
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
# Half
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
if half:
model.half()
# Configure
model.eval()
if isinstance(data, str):
is_coco = data.endswith('coco.yaml')
with open(data) as f:
data = yaml.safe_load(f)
check_dataset(data) # check
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
# Logging
log_imgs = 0
if wandb_logger and wandb_logger.wandb:
log_imgs = min(wandb_logger.log_imgs, 100)
# Dataloader
if not training:
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
prefix=colorstr(f'{task}: '))[0]
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
nb, _, height, width = img.shape # batch size, channels, height, width
# Run model
t = time_synchronized()
out, train_out = model(img, augment=augment) # inference and training outputs
t0 += time_synchronized() - t
# Compute loss
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
# Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t = time_synchronized()
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
t1 += time_synchronized() - t
# Statistics per image
for si, pred in enumerate(out):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
path = Path(paths[si])
seen += 1
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
# Predictions
if single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
# Append to text file
if save_txt:
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# W&B logging - Media Panel Plots
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": "%s %.3f" % (names[cls], conf),
"scores": {"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
# Assign all predictions as incorrect
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
if nl:
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
if plots:
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # target indices
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # prediction indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
# Append detections
detected_set = set()
for j in (ious > iouv[0]).nonzero(as_tuple=False):
d = ti[i[j]] # detected target
if d.item() not in detected_set:
detected_set.add(d.item())
detected.append(d)
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
if len(detected) == nl: # all targets already located in image
break
# Append statistics (correct, conf, pcls, tcls)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# Plot images
if plots and batch_i < 3:
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
if not training:
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
if wandb_logger and wandb_logger.wandb:
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
wandb_logger.log({"Validation": val_batches})
if wandb_images:
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
# Save JSON
if save_json and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
print(f'pycocotools unable to run: {e}')
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default='yolov3.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--project', default='runs/test', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.save_json |= opt.data.endswith('coco.yaml')
opt.data = check_file(opt.data) # check file
print(opt)
check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
if opt.task in ('train', 'val', 'test'): # run normally
test(opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.conf_thres,
opt.iou_thres,
opt.save_json,
opt.single_cls,
opt.augment,
opt.verbose,
save_txt=opt.save_txt | opt.save_hybrid,
save_hybrid=opt.save_hybrid,
save_conf=opt.save_conf,
opt=opt
)
elif opt.task == 'speed': # speed benchmarks
for w in opt.weights:
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, opt=opt)
elif opt.task == 'study': # run over a range of settings and save/plot
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov3.pt yolov3-spp.pt yolov3-tiny.pt
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
for w in opt.weights:
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
y = [] # y axis
for i in x: # img-size
print(f'\nRunning {f} point {i}...')
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
plots=False, opt=opt)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_study_txt(x=x) # plot

648
train.py
View File

@ -1,147 +1,178 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Train a model on a custom dataset
Usage:
$ python path/to/train.py --data coco128.yaml --weights yolov3.pt --img 640
"""
import argparse
import logging
import math
import os
import random
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path
from threading import Thread
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from torch.optim import SGD, Adam, lr_scheduler
from tqdm import tqdm
import test # import test.py to get mAP after each epoch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
import val # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.downloads import attempt_download
from utils.general import (LOGGER, NCOLS, check_dataset, check_file, check_git_status, check_img_size,
check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
one_cycle, print_args, print_mutation, strip_optimizer)
from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
from utils.metrics import fitness
from utils.plots import plot_evolve, plot_labels
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
logger = logging.getLogger(__name__)
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
def train(hyp, opt, device, tb_writer=None):
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
def train(hyp, # path/to/hyp.yaml or hyp dictionary
opt,
device,
callbacks
):
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
# Directories
wdir = save_dir / 'weights'
wdir.mkdir(parents=True, exist_ok=True) # make dir
last = wdir / 'last.pt'
best = wdir / 'best.pt'
results_file = save_dir / 'results.txt'
w = save_dir / 'weights' # weights dir
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
last, best = w / 'last.pt', w / 'best.pt'
# Hyperparameters
if isinstance(hyp, str):
with open(hyp, errors='ignore') as f:
hyp = yaml.safe_load(f) # load hyps dict
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
# Save run settings
with open(save_dir / 'hyp.yaml', 'w') as f:
yaml.safe_dump(hyp, f, sort_keys=False)
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.safe_dump(vars(opt), f, sort_keys=False)
data_dict = None
# Configure
plots = not opt.evolve # create plots
# Loggers
if RANK in [-1, 0]:
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
if loggers.wandb:
data_dict = loggers.wandb.data_dict
if resume:
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
# Register actions
for k in methods(loggers):
callbacks.register_action(k, callback=getattr(loggers, k))
# Config
plots = not evolve # create plots
cuda = device.type != 'cpu'
init_seeds(2 + rank)
with open(opt.data) as f:
data_dict = yaml.safe_load(f) # data dict
# Logging- Doing this before checking the dataset. Might update data_dict
loggers = {'wandb': None} # loggers dict
if rank in [-1, 0]:
opt.hyp = hyp # add hyperparameters
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
loggers['wandb'] = wandb_logger.wandb
data_dict = wandb_logger.data_dict
if wandb_logger.wandb:
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
is_coco = opt.data.endswith('coco.yaml') and nc == 80 # COCO dataset
init_seeds(1 + RANK)
with torch_distributed_zero_first(LOCAL_RANK):
data_dict = data_dict or check_dataset(data) # check if None
train_path, val_path = data_dict['train'], data_dict['val']
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
# Model
check_suffix(weights, '.pt') # check weights
pretrained = weights.endswith('.pt')
if pretrained:
with torch_distributed_zero_first(rank):
with torch_distributed_zero_first(LOCAL_RANK):
weights = attempt_download(weights) # download if not found locally
ckpt = torch.load(weights, map_location=device) # load checkpoint
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(state_dict, strict=False) # load
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(csd, strict=False) # load
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
else:
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
with torch_distributed_zero_first(rank):
check_dataset(data_dict) # check
train_path = data_dict['train']
test_path = data_dict['val']
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
# Freeze
freeze = [] # parameter names to freeze (full or partial)
freeze = [f'model.{x}.' for x in range(freeze)] # layers to freeze
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
if any(x in k for x in freeze):
print('freezing %s' % k)
LOGGER.info(f'freezing {k}')
v.requires_grad = False
# Image size
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
# Batch size
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
batch_size = check_train_batch_size(model, imgsz)
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d):
pg0.append(v.weight) # no decay
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
g0, g1, g2 = [], [], [] # optimizer parameter groups
for v in model.modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
g2.append(v.bias)
if isinstance(v, nn.BatchNorm2d): # weight (no decay)
g0.append(v.weight)
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
g1.append(v.weight)
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
optimizer.add_param_group({'params': g2}) # add g2 (biases)
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
del g0, g1, g2
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
# Scheduler
if opt.linear_lr:
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
else:
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# plot_lr_scheduler(optimizer, scheduler, epochs)
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA
ema = ModelEMA(model) if rank in [-1, 0] else None
ema = ModelEMA(model) if RANK in [-1, 0] else None
# Resume
start_epoch, best_fitness = 0, 0.0
@ -156,80 +187,70 @@ def train(hyp, opt, device, tb_writer=None):
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
ema.updates = ckpt['updates']
# Results
if ckpt.get('training_results') is not None:
results_file.write_text(ckpt['training_results']) # write results.txt
# Epochs
start_epoch = ckpt['epoch'] + 1
if opt.resume:
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
if resume:
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
if epochs < start_epoch:
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt, state_dict
# Image sizes
gs = max(int(model.stride.max()), 32) # grid size (max stride)
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
del ckpt, csd
# DP mode
if cuda and rank == -1 and torch.cuda.device_count() > 1:
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
model = torch.nn.DataParallel(model)
# SyncBatchNorm
if opt.sync_bn and cuda and rank != -1:
if opt.sync_bn and cuda and RANK != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
logger.info('Using SyncBatchNorm()')
LOGGER.info('Using SyncBatchNorm()')
# Trainloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
world_size=opt.world_size, workers=opt.workers,
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
nb = len(dataloader) # number of batches
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,
workers=workers, image_weights=opt.image_weights, quad=opt.quad,
prefix=colorstr('train: '), shuffle=True)
mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
nb = len(train_loader) # number of batches
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
# Process 0
if rank in [-1, 0]:
testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
world_size=opt.world_size, workers=opt.workers,
pad=0.5, prefix=colorstr('val: '))[0]
if RANK in [-1, 0]:
val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,
workers=workers, pad=0.5,
prefix=colorstr('val: '))[0]
if not opt.resume:
if not resume:
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0]) # classes
# c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
if plots:
plot_labels(labels, names, save_dir, loggers)
if tb_writer:
tb_writer.add_histogram('classes', c, 0)
plot_labels(labels, names, save_dir)
# Anchors
if not opt.noautoanchor:
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
model.half().float() # pre-reduce anchor precision
callbacks.run('on_pretrain_routine_end')
# DDP mode
if cuda and rank != -1:
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
# nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
if cuda and RANK != -1:
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
# Model parameters
hyp['box'] *= 3. / nl # scale to layers
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
hyp['box'] *= 3 / nl # scale to layers
hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
hyp['label_smoothing'] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
model.names = names
@ -237,53 +258,47 @@ def train(hyp, opt, device, tb_writer=None):
t0 = time.time()
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
last_opt_step = -1
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=cuda)
stopper = EarlyStopping(patience=opt.patience)
compute_loss = ComputeLoss(model) # init loss class
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
f'Using {dataloader.num_workers} dataloader workers\n'
f'Logging results to {save_dir}\n'
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
f"Logging results to {colorstr('bold', save_dir)}\n"
f'Starting training for {epochs} epochs...')
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
# Update image weights (optional)
# Update image weights (optional, single-GPU only)
if opt.image_weights:
# Generate indices
if rank in [-1, 0]:
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
# Broadcast if DDP
if rank != -1:
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
dist.broadcast(indices, 0)
if rank != 0:
dataset.indices = indices.cpu().numpy()
# Update mosaic border
# Update mosaic border (optional)
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
mloss = torch.zeros(4, device=device) # mean losses
if rank != -1:
dataloader.sampler.set_epoch(epoch)
pbar = enumerate(dataloader)
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
if rank in [-1, 0]:
pbar = tqdm(pbar, total=nb) # progress bar
mloss = torch.zeros(3, device=device) # mean losses
if RANK != -1:
train_loader.sampler.set_epoch(epoch)
pbar = enumerate(train_loader)
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
if RANK in [-1, 0]:
pbar = tqdm(pbar, total=nb, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
@ -296,14 +311,14 @@ def train(hyp, opt, device, tb_writer=None):
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward
with amp.autocast(enabled=cuda):
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
if rank != -1:
loss *= opt.world_size # gradient averaged between devices in DDP mode
if RANK != -1:
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.
@ -311,234 +326,203 @@ def train(hyp, opt, device, tb_writer=None):
scaler.scale(loss).backward()
# Optimize
if ni % accumulate == 0:
if ni - last_opt_step >= accumulate:
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
# Print
if rank in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
pbar.set_description(s)
# Plot
if plots and ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
if tb_writer:
tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), []) # model graph
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
elif plots and ni == 10 and wandb_logger.wandb:
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
save_dir.glob('train*.jpg') if x.exists()]})
# end batch ------------------------------------------------------------------------------------------------
# end epoch ----------------------------------------------------------------------------------------------------
# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
scheduler.step()
# DDP process 0 or single-GPU
if rank in [-1, 0]:
# mAP
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
final_epoch = epoch + 1 == epochs
if not opt.notest or final_epoch: # Calculate mAP
wandb_logger.current_epoch = epoch + 1
results, maps, times = test.test(data_dict,
batch_size=batch_size * 2,
imgsz=imgsz_test,
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=is_coco and final_epoch,
verbose=nc < 50 and final_epoch,
plots=plots and final_epoch,
wandb_logger=wandb_logger,
compute_loss=compute_loss,
is_coco=is_coco)
# Write
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
last_opt_step = ni
# Log
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
if tb_writer:
tb_writer.add_scalar(tag, x, epoch) # tensorboard
if wandb_logger.wandb:
wandb_logger.log({tag: x}) # W&B
if RANK in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
# end batch ------------------------------------------------------------------------------------------------
# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
scheduler.step()
if RANK in [-1, 0]:
# mAP
callbacks.run('on_train_epoch_end', epoch=epoch)
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
if not noval or final_epoch: # Calculate mAP
results, maps, _ = val.run(data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=ema.ema,
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
plots=False,
callbacks=callbacks,
compute_loss=compute_loss)
# Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if fi > best_fitness:
best_fitness = fi
wandb_logger.end_epoch(best_result=best_fitness == fi)
log_vals = list(mloss) + list(results) + lr
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
# Save model
if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
if (not nosave) or (final_epoch and not evolve): # if save
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': results_file.read_text(),
'model': deepcopy(de_parallel(model)).half(),
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': optimizer.state_dict(),
'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
'date': datetime.now().isoformat()}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
if wandb_logger.wandb:
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
wandb_logger.log_model(
last.parent, opt, epoch, fi, best_model=best_fitness == fi)
if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
torch.save(ckpt, w / f'epoch{epoch}.pt')
del ckpt
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
# Stop Single-GPU
if RANK == -1 and stopper(epoch=epoch, fitness=fi):
break
# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
# stop = stopper(epoch=epoch, fitness=fi)
# if RANK == 0:
# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
# Stop DPP
# with torch_distributed_zero_first(RANK):
# if stop:
# break # must break all DDP ranks
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if rank in [-1, 0]:
logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
if plots:
plot_results(save_dir=save_dir) # save as results.png
if wandb_logger.wandb:
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
if (save_dir / f).exists()]})
if not opt.evolve:
if is_coco: # COCO dataset
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
results, _, _ = test.test(opt.data,
batch_size=batch_size * 2,
imgsz=imgsz_test,
conf_thres=0.001,
iou_thres=0.7,
model=attempt_load(m, device).half(),
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=True,
plots=False,
is_coco=is_coco)
# Strip optimizers
# end training -----------------------------------------------------------------------------------------------------
if RANK in [-1, 0]:
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if wandb_logger.wandb: # Log the stripped model
wandb_logger.wandb.log_artifact(str(best if best.exists() else last), type='model',
name='run_' + wandb_logger.wandb_run.id + '_model',
aliases=['latest', 'best', 'stripped'])
wandb_logger.finish_run()
else:
dist.destroy_process_group()
if f is best:
LOGGER.info(f'\nValidating {f}...')
results, _, _ = val.run(data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=attempt_load(f, device).half(),
iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
save_json=is_coco,
verbose=True,
plots=True,
callbacks=callbacks,
compute_loss=compute_loss) # val best model with plots
if is_coco:
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
callbacks.run('on_train_end', last, best, plots, epoch, results)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
torch.cuda.empty_cache()
return results
if __name__ == '__main__':
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov3.pt', help='initial weights path')
parser.add_argument('--weights', type=str, default=ROOT / 'yolov3.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--entity', default=None, help='W&B entity')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
opt = parser.parse_args()
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
# Set DDP variables
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
set_logging(opt.global_rank)
if opt.global_rank in [-1, 0]:
# Weights & Biases arguments
parser.add_argument('--entity', default=None, help='W&B: Entity')
parser.add_argument('--upload_dataset', action='store_true', help='W&B: Upload dataset as artifact table')
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
opt = parser.parse_known_args()[0] if known else parser.parse_args()
return opt
def main(opt, callbacks=Callbacks()):
# Checks
if RANK in [-1, 0]:
print_args(FILE.stem, opt)
check_git_status()
check_requirements(exclude=('pycocotools', 'thop'))
check_requirements(exclude=['thop'])
# Resume
wandb_run = check_wandb_resume(opt)
if opt.resume and not wandb_run: # resume an interrupted run
if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
apriori = opt.global_rank, opt.local_rank
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
opt = argparse.Namespace(**yaml.safe_load(f)) # replace
opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = \
'', ckpt, True, opt.total_batch_size, *apriori # reinstate
logger.info('Resuming training from %s' % ckpt)
opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
LOGGER.info(f'Resuming training from {ckpt}')
else:
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
opt.name = 'evolve' if opt.evolve else opt.name
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve))
if opt.evolve:
opt.project = str(ROOT / 'runs/evolve')
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
# DDP mode
opt.total_batch_size = opt.batch_size
device = select_device(opt.device, batch_size=opt.batch_size)
if opt.local_rank != -1:
assert torch.cuda.device_count() > opt.local_rank
torch.cuda.set_device(opt.local_rank)
device = torch.device('cuda', opt.local_rank)
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
if LOCAL_RANK != -1:
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
opt.batch_size = opt.total_batch_size // opt.world_size
# Hyperparameters
with open(opt.hyp) as f:
hyp = yaml.safe_load(f) # load hyps
assert not opt.evolve, '--evolve argument is not compatible with DDP training'
torch.cuda.set_device(LOCAL_RANK)
device = torch.device('cuda', LOCAL_RANK)
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
# Train
logger.info(opt)
if not opt.evolve:
tb_writer = None # init loggers
if opt.global_rank in [-1, 0]:
prefix = colorstr('tensorboard: ')
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
train(hyp, opt, device, tb_writer)
train(opt.hyp, opt, device, callbacks)
if WORLD_SIZE > 1 and RANK == 0:
LOGGER.info('Destroying process group... ')
dist.destroy_process_group()
# Evolve hyperparameters (optional)
else:
@ -570,23 +554,27 @@ if __name__ == '__main__':
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
'mixup': (1, 0.0, 1.0), # image mixup (probability)
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
opt.notest, opt.nosave = True, True # only test/save final epoch
with open(opt.hyp, errors='ignore') as f:
hyp = yaml.safe_load(f) # load hyps dict
if 'anchors' not in hyp: # anchors commented in hyp.yaml
hyp['anchors'] = 3
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists
for _ in range(300): # generations to evolve
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
for _ in range(opt.evolve): # generations to evolve
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
# Select parent(s)
parent = 'single' # parent selection method: 'single' or 'weighted'
x = np.loadtxt('evolve.txt', ndmin=2)
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() # weights
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
@ -597,7 +585,7 @@ if __name__ == '__main__':
mp, s = 0.8, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([x[0] for x in meta.values()]) # gains 0-1
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
@ -612,12 +600,26 @@ if __name__ == '__main__':
hyp[k] = round(hyp[k], 5) # significant digits
# Train mutation
results = train(hyp.copy(), opt, device)
results = train(hyp.copy(), opt, device, callbacks)
# Write mutation results
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
print_mutation(results, hyp.copy(), save_dir, opt.bucket)
# Plot results
plot_evolution(yaml_file)
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
plot_evolve(evolve_csv)
LOGGER.info(f'Hyperparameter evolution finished\n'
f"Results saved to {colorstr('bold', save_dir)}\n"
f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')
def run(**kwargs):
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov3.pt')
opt = parse_opt(True)
for k, v in kwargs.items():
setattr(opt, k, v)
main(opt)
if __name__ == "__main__":
opt = parse_opt()
main(opt)

853
tutorial.ipynb vendored

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,18 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
utils/initialization
"""
def notebook_init():
# For notebooks
print('Checking setup...')
from IPython import display # to display images and clear console output
from utils.general import emojis
from utils.torch_utils import select_device # imports
display.clear_output()
select_device(newline=False)
print(emojis('Setup complete ✅'))
return display

View File

@ -1,4 +1,7 @@
# Activation functions
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Activation functions
"""
import torch
import torch.nn as nn
@ -16,7 +19,7 @@ class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
@staticmethod
def forward(x):
# return x * F.hardsigmoid(x) # for torchscript and CoreML
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for torchscript, CoreML and ONNX
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------

277
utils/augmentations.py Normal file
View File

@ -0,0 +1,277 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Image augmentation functions
"""
import math
import random
import cv2
import numpy as np
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
from utils.metrics import bbox_ioa
class Albumentations:
# Albumentations class (optional, only used if package is installed)
def __init__(self):
self.transform = None
try:
import albumentations as A
check_version(A.__version__, '1.0.3', hard=True) # version requirement
self.transform = A.Compose([
A.Blur(p=0.01),
A.MedianBlur(p=0.01),
A.ToGray(p=0.01),
A.CLAHE(p=0.01),
A.RandomBrightnessContrast(p=0.0),
A.RandomGamma(p=0.0),
A.ImageCompression(quality_lower=75, p=0.0)],
bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
except ImportError: # package not installed, skip
pass
except Exception as e:
LOGGER.info(colorstr('albumentations: ') + f'{e}')
def __call__(self, im, labels, p=1.0):
if self.transform and random.random() < p:
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
return im, labels
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
# HSV color-space augmentation
if hgain or sgain or vgain:
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
dtype = im.dtype # uint8
x = np.arange(0, 256, dtype=r.dtype)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
def hist_equalize(im, clahe=True, bgr=False):
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
if clahe:
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
else:
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
def replicate(im, labels):
# Replicate labels
h, w = im.shape[:2]
boxes = labels[:, 1:].astype(int)
x1, y1, x2, y2 = boxes.T
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
x1b, y1b, x2b, y2b = boxes[i]
bh, bw = y2b - y1b, x2b - x1b
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
return im, labels
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, ratio, (dw, dh)
def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
border=(0, 0)):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
width = im.shape[1] + border[1] * 2
# Center
C = np.eye(3)
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
# Perspective
P = np.eye(3)
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
# Translation
T = np.eye(3)
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
# Combined rotation matrix
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
if perspective:
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
else: # affine
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
# Visualize
# import matplotlib.pyplot as plt
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
# ax[0].imshow(im[:, :, ::-1]) # base
# ax[1].imshow(im2[:, :, ::-1]) # warped
# Transform label coordinates
n = len(targets)
if n:
use_segments = any(x.any() for x in segments)
new = np.zeros((n, 4))
if use_segments: # warp segments
segments = resample_segments(segments) # upsample
for i, segment in enumerate(segments):
xy = np.ones((len(segment), 3))
xy[:, :2] = segment
xy = xy @ M.T # transform
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
# clip
new[i] = segment2box(xy, width, height)
else: # warp boxes
xy = np.ones((n * 4, 3))
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = xy @ M.T # transform
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
# filter candidates
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
targets = targets[i]
targets[:, 1:5] = new[i]
return im, targets
def copy_paste(im, labels, segments, p=0.5):
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
n = len(segments)
if p and n:
h, w, c = im.shape # height, width, channels
im_new = np.zeros(im.shape, np.uint8)
for j in random.sample(range(n), k=round(p * n)):
l, s = labels[j], segments[j]
box = w - l[3], l[2], w - l[1], l[4]
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
labels = np.concatenate((labels, [[l[0], *box]]), 0)
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
result = cv2.bitwise_and(src1=im, src2=im_new)
result = cv2.flip(result, 1) # augment segments (flip left-right)
i = result > 0 # pixels to replace
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
return im, labels, segments
def cutout(im, labels, p=0.5):
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
if random.random() < p:
h, w = im.shape[:2]
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
for s in scales:
mask_h = random.randint(1, int(h * s)) # create random masks
mask_w = random.randint(1, int(w * s))
# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)
# apply random color mask
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
# return unobscured labels
if len(labels) and s > 0.03:
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
labels = labels[ioa < 0.60] # remove >60% obscured labels
return labels
def mixup(im, labels, im2, labels2):
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
im = (im * r + im2 * (1 - r)).astype(np.uint8)
labels = np.concatenate((labels, labels2), 0)
return im, labels
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates

View File

@ -1,28 +1,32 @@
# Auto-anchor utils
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Auto-anchor utils
"""
import random
import numpy as np
import torch
import yaml
from tqdm import tqdm
from utils.general import colorstr
from utils.general import LOGGER, colorstr, emojis
PREFIX = colorstr('AutoAnchor: ')
def check_anchor_order(m):
# Check anchor order against stride order for YOLOv3 Detect() module m, and correct if necessary
a = m.anchor_grid.prod(-1).view(-1) # anchor area
# Check anchor order against stride order for Detect() module m, and correct if necessary
a = m.anchors.prod(-1).view(-1) # anchor area
da = a[-1] - a[0] # delta a
ds = m.stride[-1] - m.stride[0] # delta s
if da.sign() != ds.sign(): # same order
print('Reversing anchor order')
LOGGER.info(f'{PREFIX}Reversing anchor order')
m.anchors[:] = m.anchors.flip(0)
m.anchor_grid[:] = m.anchor_grid.flip(0)
def check_anchors(dataset, model, thr=4.0, imgsz=640):
# Check anchor fit to data, recompute if necessary
prefix = colorstr('autoanchor: ')
print(f'\n{prefix}Analyzing anchors... ', end='')
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
@ -30,39 +34,39 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
def metric(k): # compute metric
r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
best = x.max(1)[0] # best_x
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
bpr = (best > 1. / thr).float().mean() # best possible recall
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
bpr = (best > 1 / thr).float().mean() # best possible recall
return bpr, aat
anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
bpr, aat = metric(anchors)
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
if bpr < 0.98: # threshold to recompute
print('. Attempting to improve anchors, please wait...')
na = m.anchor_grid.numel() // 2 # number of anchors
anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1) # current anchors
bpr, aat = metric(anchors.cpu().view(-1, 2))
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
if bpr > 0.98: # threshold to recompute
LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
else:
LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
na = m.anchors.numel() // 2 # number of anchors
try:
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
except Exception as e:
print(f'{prefix}ERROR: {e}')
LOGGER.info(f'{PREFIX}ERROR: {e}')
new_bpr = metric(anchors)[0]
if new_bpr > bpr: # replace anchors
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
check_anchor_order(m)
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
else:
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
print('') # newline
LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.')
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
""" Creates kmeans-evolved anchors from training dataset
Arguments:
path: path to dataset *.yaml, or a loaded dataset
dataset: path to data.yaml, or a loaded dataset
n: number of anchors
img_size: image size used for training
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
@ -77,12 +81,11 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
"""
from scipy.cluster.vq import kmeans
thr = 1. / thr
prefix = colorstr('autoanchor: ')
thr = 1 / thr
def metric(k, wh): # compute metrics
r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
# x = wh_iou(wh, torch.tensor(k)) # iou metric
return x, x.max(1)[0] # x, best_x
@ -90,24 +93,24 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
return (best * (best > thr).float()).mean() # fitness
def print_results(k):
def print_results(k, verbose=True):
k = k[np.argsort(k.prod(1))] # sort small to large
x, best = metric(k, wh0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
f'past_thr={x[x > thr].mean():.3f}-mean: '
for i, x in enumerate(k):
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
s += '%i,%i, ' % (round(x[0]), round(x[1]))
if verbose:
LOGGER.info(s[:-2])
return k
if isinstance(path, str): # *.yaml file
with open(path) as f:
if isinstance(dataset, str): # *.yaml file
with open(dataset, errors='ignore') as f:
data_dict = yaml.safe_load(f) # model dict
from utils.datasets import LoadImagesAndLabels
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
else:
dataset = path # dataset
# Get label wh
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
@ -116,19 +119,19 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
# Filter
i = (wh0 < 3.0).any(1).sum()
if i:
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
# Kmeans calculation
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
s = wh.std(0) # sigmas for whitening
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
assert len(k) == n, f'{PREFIX}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}'
k *= s
wh = torch.tensor(wh, dtype=torch.float32) # filtered
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
k = print_results(k)
k = print_results(k, verbose=False)
# Plot
# k, d = [None] * 20, [None] * 20
@ -145,17 +148,17 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
# Evolve
npr = np.random
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:') # progress bar
for _ in pbar:
v = np.ones(sh)
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
kg = (k.copy() * v).clip(min=2.0)
fg = anchor_fitness(kg)
if fg > f:
f, k = fg, kg.copy()
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
if verbose:
print_results(k)
print_results(k, verbose)
return print_results(k)

57
utils/autobatch.py Normal file
View File

@ -0,0 +1,57 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Auto-batch utils
"""
from copy import deepcopy
import numpy as np
import torch
from torch.cuda import amp
from utils.general import LOGGER, colorstr
from utils.torch_utils import profile
def check_train_batch_size(model, imgsz=640):
# Check training batch size
with amp.autocast():
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
# Automatically estimate best batch size to use `fraction` of available CUDA memory
# Usage:
# import torch
# from utils.autobatch import autobatch
# model = torch.hub.load('ultralytics/yolov3', 'yolov3', autoshape=False)
# print(autobatch(model))
prefix = colorstr('AutoBatch: ')
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
device = next(model.parameters()).device # get model device
if device.type == 'cpu':
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
return batch_size
d = str(device).upper() # 'CUDA:0'
properties = torch.cuda.get_device_properties(device) # device properties
t = properties.total_memory / 1024 ** 3 # (GiB)
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GiB)
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GiB)
f = t - (r + a) # free inside reserved
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
y = profile(img, model, n=3, device=device)
except Exception as e:
LOGGER.warning(f'{prefix}{e}')
y = [x[2] for x in y if x] # memory [2]
batch_sizes = batch_sizes[:len(y)]
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
return b

View File

@ -1,26 +0,0 @@
# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
# This script will run on every instance restart, not only on first start
# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
Content-Type: multipart/mixed; boundary="//"
MIME-Version: 1.0
--//
Content-Type: text/cloud-config; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="cloud-config.txt"
#cloud-config
cloud_final_modules:
- [scripts-user, always]
--//
Content-Type: text/x-shellscript; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="userdata.txt"
#!/bin/bash
# --- paste contents of userdata.sh here ---
--//

View File

@ -1,37 +0,0 @@
# Resume all interrupted trainings in yolov5/ dir including DDP trainings
# Usage: $ python utils/aws/resume.py
import os
import sys
from pathlib import Path
import torch
import yaml
sys.path.append('./') # to run '$ python *.py' files in subdirectories
port = 0 # --master_port
path = Path('').resolve()
for last in path.rglob('*/**/last.pt'):
ckpt = torch.load(last)
if ckpt['optimizer'] is None:
continue
# Load opt.yaml
with open(last.parent.parent / 'opt.yaml') as f:
opt = yaml.safe_load(f)
# Get device count
d = opt['device'].split(',') # devices
nd = len(d) # number of devices
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
if ddp: # multi-GPU
port += 1
cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
else: # single-GPU
cmd = f'python train.py --resume {last}'
cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
print(cmd)
os.system(cmd)

View File

@ -1,27 +0,0 @@
#!/bin/bash
# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
# This script will run only once on first instance start (for a re-start script see mime.sh)
# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
# Use >300 GB SSD
cd home/ubuntu
if [ ! -d yolov5 ]; then
echo "Running first-time script." # install dependencies, download COCO, pull Docker
git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
cd yolov5
bash data/scripts/get_coco.sh && echo "Data done." &
sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
wait && echo "All tasks done." # finish background tasks
else
echo "Running re-start script." # resume interrupted runs
i=0
list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
while IFS= read -r id; do
((i++))
echo "restarting container $i: $id"
sudo docker start $id
# sudo docker exec -it $id python train.py --resume # single-GPU
sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
done <<<"$list"
fi

76
utils/callbacks.py Normal file
View File

@ -0,0 +1,76 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Callback utils
"""
class Callbacks:
""""
Handles all registered callbacks for Hooks
"""
# Define the available callbacks
_callbacks = {
'on_pretrain_routine_start': [],
'on_pretrain_routine_end': [],
'on_train_start': [],
'on_train_epoch_start': [],
'on_train_batch_start': [],
'optimizer_step': [],
'on_before_zero_grad': [],
'on_train_batch_end': [],
'on_train_epoch_end': [],
'on_val_start': [],
'on_val_batch_start': [],
'on_val_image_end': [],
'on_val_batch_end': [],
'on_val_end': [],
'on_fit_epoch_end': [], # fit = train + val
'on_model_save': [],
'on_train_end': [],
'teardown': [],
}
def register_action(self, hook, name='', callback=None):
"""
Register a new action to a callback hook
Args:
hook The callback hook name to register the action to
name The name of the action for later reference
callback The callback to fire
"""
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
assert callable(callback), f"callback '{callback}' is not callable"
self._callbacks[hook].append({'name': name, 'callback': callback})
def get_registered_actions(self, hook=None):
""""
Returns all the registered actions by callback hook
Args:
hook The name of the hook to check, defaults to all
"""
if hook:
return self._callbacks[hook]
else:
return self._callbacks
def run(self, hook, *args, **kwargs):
"""
Loop through the registered actions and fire all callbacks
Args:
hook The name of the hook to check, defaults to all
args Arguments to receive from
kwargs Keyword Arguments to receive from
"""
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
for logger in self._callbacks[hook]:
logger['callback'](*args, **kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -1,10 +1,15 @@
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Download utils
"""
import os
import platform
import subprocess
import time
import urllib
from pathlib import Path
from zipfile import ZipFile
import requests
import torch
@ -19,30 +24,32 @@ def gsutil_getsize(url=''):
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
file = Path(file)
try: # GitHub
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
try: # url1
print(f'Downloading {url} to {file}...')
torch.hub.download_url_to_file(url, str(file))
assert file.exists() and file.stat().st_size > min_bytes # check
except Exception as e: # GCP
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
except Exception as e: # url2
file.unlink(missing_ok=True) # remove partial downloads
print(f'Download error: {e}\nRe-attempting {url2 or url} to {file}...')
print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
finally:
if not file.exists() or file.stat().st_size < min_bytes: # check
file.unlink(missing_ok=True) # remove partial downloads
print(f'ERROR: Download failure: {error_msg or url}')
print(f"ERROR: {assert_msg}\n{error_msg}")
print('')
def attempt_download(file, repo='ultralytics/yolov3'):
def attempt_download(file, repo='ultralytics/yolov3'): # from utils.downloads import *; attempt_download()
# Attempt file download if does not exist
file = Path(str(file).strip().replace("'", ''))
if not file.exists():
# URL specified
name = file.name
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
if str(file).startswith(('http:/', 'https:/')): # download
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
name = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
safe_download(file=name, url=url, min_bytes=1E5)
return name
@ -50,7 +57,7 @@ def attempt_download(file, repo='ultralytics/yolov3'):
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
try:
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov3.pt'...]
tag = response['tag_name'] # i.e. 'v1.0'
except: # fallback plan
assets = ['yolov3.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt']
@ -70,7 +77,7 @@ def attempt_download(file, repo='ultralytics/yolov3'):
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
# Downloads a file from Google Drive. from yolov3.utils.google_utils import *; gdrive_download()
# Downloads a file from Google Drive. from yolov3.utils.downloads import *; gdrive_download()
t = time.time()
file = Path(file)
cookie = Path('cookie') # gdrive cookie
@ -97,8 +104,8 @@ def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
# Unzip if archive
if file.suffix == '.zip':
print('unzipping... ', end='')
os.system(f'unzip -q {file}') # unzip
file.unlink() # remove zip to free space
ZipFile(file).extractall(path=file.parent) # unzip
file.unlink() # remove zip
print(f'Done ({time.time() - t:.1f}s)')
return r
@ -111,6 +118,9 @@ def get_token(cookie="./cookie"):
return line.split()[-1]
return ""
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
#
#
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
# # Uploads a file to a bucket
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python

View File

@ -1,68 +0,0 @@
# Flask REST API
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
## Requirements
[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
```shell
$ pip install Flask
```
## Run
After Flask installation run:
```shell
$ python3 restapi.py --port 5000
```
Then use [curl](https://curl.se/) to perform a request:
```shell
$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'`
```
The model inference results are returned as a JSON response:
```json
[
{
"class": 0,
"confidence": 0.8900438547,
"height": 0.9318675399,
"name": "person",
"width": 0.3264600933,
"xcenter": 0.7438579798,
"ycenter": 0.5207948685
},
{
"class": 0,
"confidence": 0.8440024257,
"height": 0.7155083418,
"name": "person",
"width": 0.6546785235,
"xcenter": 0.427829951,
"ycenter": 0.6334488392
},
{
"class": 27,
"confidence": 0.3771208823,
"height": 0.3902671337,
"name": "tie",
"width": 0.0696444362,
"xcenter": 0.3675483763,
"ycenter": 0.7991207838
},
{
"class": 27,
"confidence": 0.3527112305,
"height": 0.1540903747,
"name": "tie",
"width": 0.0336618312,
"xcenter": 0.7814827561,
"ycenter": 0.5065554976
}
]
```
An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py`

View File

@ -1,13 +0,0 @@
"""Perform test request"""
import pprint
import requests
DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
TEST_IMAGE = "zidane.jpg"
image_data = open(TEST_IMAGE, "rb").read()
response = requests.post(DETECTION_URL, files={"image": image_data}).json()
pprint.pprint(response)

View File

@ -1,37 +0,0 @@
"""
Run a rest API exposing the yolov5s object detection model
"""
import argparse
import io
import torch
from PIL import Image
from flask import Flask, request
app = Flask(__name__)
DETECTION_URL = "/v1/object-detection/yolov5s"
@app.route(DETECTION_URL, methods=["POST"])
def predict():
if not request.method == "POST":
return
if request.files.get("image"):
image_file = request.files["image"]
image_bytes = image_file.read()
img = Image.open(io.BytesIO(image_bytes))
results = model(img, size=640) # reduce size=320 for faster inference
return results.pandas().xyxy[0].to_json(orient="records")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv3 model")
parser.add_argument("--port", default=5000, type=int, help="port number")
args = parser.parse_args()
model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache
app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat

View File

@ -1,5 +1,9 @@
# YOLOv3 general utils
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
General utils
"""
import contextlib
import glob
import logging
import math
@ -7,11 +11,15 @@ import os
import platform
import random
import re
import subprocess
import shutil
import signal
import time
import urllib
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from subprocess import check_output
from zipfile import ZipFile
import cv2
import numpy as np
@ -21,9 +29,8 @@ import torch
import torchvision
import yaml
from utils.google_utils import gsutil_getsize
from utils.metrics import fitness
from utils.torch_utils import init_torch_seeds
from utils.downloads import gsutil_getsize
from utils.metrics import box_iou, fitness
# Settings
torch.set_printoptions(linewidth=320, precision=5, profile='long')
@ -32,18 +39,96 @@ pd.options.display.max_columns = 10
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # root directory
def set_logging(rank=-1, verbose=True):
logging.basicConfig(
format="%(message)s",
level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN)
def set_logging(name=None, verbose=True):
# Sets level and returns logger
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
logging.basicConfig(format="%(message)s", level=logging.INFO if (verbose and rank in (-1, 0)) else logging.WARNING)
return logging.getLogger(name)
LOGGER = set_logging(__name__) # define globally (used in train.py, val.py, detect.py, etc.)
class Profile(contextlib.ContextDecorator):
# Usage: @Profile() decorator or 'with Profile():' context manager
def __enter__(self):
self.start = time.time()
def __exit__(self, type, value, traceback):
print(f'Profile results: {time.time() - self.start:.5f}s')
class Timeout(contextlib.ContextDecorator):
# Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
self.seconds = int(seconds)
self.timeout_message = timeout_msg
self.suppress = bool(suppress_timeout_errors)
def _timeout_handler(self, signum, frame):
raise TimeoutError(self.timeout_message)
def __enter__(self):
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
def __exit__(self, exc_type, exc_val, exc_tb):
signal.alarm(0) # Cancel SIGALRM if it's scheduled
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
return True
class WorkingDirectory(contextlib.ContextDecorator):
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
def __init__(self, new_dir):
self.dir = new_dir # new dir
self.cwd = Path.cwd().resolve() # current dir
def __enter__(self):
os.chdir(self.dir)
def __exit__(self, exc_type, exc_val, exc_tb):
os.chdir(self.cwd)
def try_except(func):
# try-except function. Usage: @try_except decorator
def handler(*args, **kwargs):
try:
func(*args, **kwargs)
except Exception as e:
print(e)
return handler
def methods(instance):
# Get class/instance methods
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
def print_args(name, opt):
# Print argparser arguments
LOGGER.info(colorstr(f'{name}: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
def init_seeds(seed=0):
# Initialize random number generator (RNG) seeds
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
# cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
import torch.backends.cudnn as cudnn
random.seed(seed)
np.random.seed(seed)
init_torch_seeds(seed)
torch.manual_seed(seed)
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
def intersect_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
def get_latest_run(search_dir='.'):
@ -52,81 +137,136 @@ def get_latest_run(search_dir='.'):
return max(last_list, key=os.path.getctime) if last_list else ''
def user_config_dir(dir='Ultralytics', env_var='YOLOV3_CONFIG_DIR'):
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
env = os.getenv(env_var)
if env:
path = Path(env) # use environment variable
else:
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
path.mkdir(exist_ok=True) # make if required
return path
def is_writeable(dir, test=False):
# Return True if directory has write permissions, test opening a file with write permissions if test=True
if test: # method 1
file = Path(dir) / 'tmp.txt'
try:
with open(file, 'w'): # open file with write permissions
pass
file.unlink() # remove file
return True
except OSError:
return False
else: # method 2
return os.access(dir, os.R_OK) # possible issues on Windows
def is_docker():
# Is environment a Docker container
# Is environment a Docker container?
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
def is_colab():
# Is environment a Google Colab instance
# Is environment a Google Colab instance?
try:
import google.colab
return True
except Exception as e:
except ImportError:
return False
def is_pip():
# Is file in a pip package?
return 'site-packages' in Path(__file__).resolve().parts
def is_ascii(s=''):
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
s = str(s) # convert list, tuple, None, etc. to str
return len(s.encode().decode('ascii', 'ignore')) == len(s)
def is_chinese(s='人工智能'):
# Is string composed of any Chinese characters?
return re.search('[\u4e00-\u9fff]', s)
def emojis(str=''):
# Return platform-dependent emoji-safe version of string
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
def file_size(file):
# Return file size in MB
return Path(file).stat().st_size / 1e6
def file_size(path):
# Return file/dir size (MB)
path = Path(path)
if path.is_file():
return path.stat().st_size / 1E6
elif path.is_dir():
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
else:
return 0.0
def check_online():
# Check internet connectivity
import socket
try:
socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
return True
except OSError:
return False
@try_except
@WorkingDirectory(ROOT)
def check_git_status():
# Recommend 'git pull' if code is out of date
msg = ', for updates see https://github.com/ultralytics/yolov3'
print(colorstr('github: '), end='')
try:
assert Path('.git').exists(), 'skipping check (not a git repository)'
assert not is_docker(), 'skipping check (Docker image)'
assert check_online(), 'skipping check (offline)'
assert Path('.git').exists(), 'skipping check (not a git repository)' + msg
assert not is_docker(), 'skipping check (Docker image)' + msg
assert check_online(), 'skipping check (offline)' + msg
cmd = 'git fetch && git config --get remote.origin.url'
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch
branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
if n > 0:
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
f"Use 'git pull' to update or 'git clone {url}' to download latest."
s = f"⚠️ YOLOv3 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update."
else:
s = f'up to date with {url}'
print(emojis(s)) # emoji-safe
except Exception as e:
print(e)
def check_python(minimum='3.7.0', required=True):
def check_python(minimum='3.6.2'):
# Check current python version vs. required python version
current = platform.python_version()
result = pkg.parse_version(current) >= pkg.parse_version(minimum)
if required:
assert result, f'Python {minimum} required by YOLOv3, but Python {current} is currently installed'
check_version(platform.python_version(), minimum, name='Python ', hard=True)
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False):
# Check version vs. required version
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
result = (current == minimum) if pinned else (current >= minimum) # bool
if hard: # assert min requirements met
assert result, f'{name}{minimum} required by YOLOv3, but {name}{current} is currently installed'
else:
return result
def check_requirements(requirements='requirements.txt', exclude=()):
@try_except
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True):
# Check installed dependencies meet requirements (pass *.txt file or list of packages)
prefix = colorstr('red', 'bold', 'requirements:')
check_python() # check python version
if isinstance(requirements, (str, Path)): # requirements.txt file
file = Path(requirements)
if not file.exists():
print(f"{prefix} {file.resolve()} not found, check failed.")
return
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
with file.open() as f:
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
else: # list or tuple of packages
requirements = [x for x in requirements if x not in exclude]
@ -135,25 +275,33 @@ def check_requirements(requirements='requirements.txt', exclude=()):
try:
pkg.require(r)
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
n += 1
print(f"{prefix} {r} not found and is required by YOLOv3, attempting auto-update...")
s = f"{prefix} {r} not found and is required by YOLOv3"
if install:
print(f"{s}, attempting auto-update...")
try:
print(subprocess.check_output(f"pip install '{r}'", shell=True).decode())
assert check_online(), f"'pip install {r}' skipped (offline)"
print(check_output(f"pip install '{r}'", shell=True).decode())
n += 1
except Exception as e:
print(f'{prefix} {e}')
else:
print(f'{s}. Please install and rerun your command.')
if n: # if packages updated
source = file.resolve() if 'file' in locals() else requirements
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
print(emojis(s)) # emoji-safe
print(emojis(s))
def check_img_size(img_size, s=32):
# Verify img_size is a multiple of stride s
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
if new_size != img_size:
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
def check_img_size(imgsz, s=32, floor=0):
# Verify image size is a multiple of stride s in each dimension
if isinstance(imgsz, int): # integer i.e. img_size=640
new_size = max(make_divisible(imgsz, int(s)), floor)
else: # list i.e. img_size=[640, 480]
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
if new_size != imgsz:
print(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
return new_size
@ -172,53 +320,114 @@ def check_imshow():
return False
def check_file(file):
def check_suffix(file='yolov3.pt', suffix=('.pt',), msg=''):
# Check file(s) for acceptable suffix
if file and suffix:
if isinstance(suffix, str):
suffix = [suffix]
for f in file if isinstance(file, (list, tuple)) else [file]:
s = Path(f).suffix.lower() # file suffix
if len(s):
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
def check_yaml(file, suffix=('.yaml', '.yml')):
# Search/download YAML file (if necessary) and return path, checking suffix
return check_file(file, suffix)
def check_file(file, suffix=''):
# Search/download file (if necessary) and return path
check_suffix(file, suffix) # optional
file = str(file) # convert to str()
if Path(file).is_file() or file == '': # exists
return file
elif file.startswith(('http://', 'https://')): # download
url, file = file, Path(file).name
elif file.startswith(('http:/', 'https:/')): # download
url = str(Path(file)).replace(':/', '://') # Pathlib turns :// -> :/
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
if Path(file).is_file():
print(f'Found {url} locally at {file}') # file already exists
else:
print(f'Downloading {url} to {file}...')
torch.hub.download_url_to_file(url, file)
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
return file
else: # search
files = glob.glob('./**/' + file, recursive=True) # find file
files = []
for d in 'data', 'models', 'utils': # search directories
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
assert len(files), f'File not found: {file}' # assert file was found
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
return files[0] # return file
def check_dataset(dict):
# Download dataset if not found locally
val, s = dict.get('val'), dict.get('download')
if val and len(val):
def check_dataset(data, autodownload=True):
# Download and/or unzip dataset if not found locally
# Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip
# Download (optional)
extract_dir = ''
if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
download(data, dir='../datasets', unzip=True, delete=False, curl=False, threads=1)
data = next((Path('../datasets') / Path(data).stem).rglob('*.yaml'))
extract_dir, autodownload = data.parent, False
# Read yaml (optional)
if isinstance(data, (str, Path)):
with open(data, errors='ignore') as f:
data = yaml.safe_load(f) # dictionary
# Parse yaml
path = extract_dir or Path(data.get('path') or '') # optional 'path' default to '.'
for k in 'train', 'val', 'test':
if data.get(k): # prepend path
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
assert 'nc' in data, "Dataset 'nc' key missing."
if 'names' not in data:
data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
if val:
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
if not all(x.exists() for x in val):
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
if s and len(s): # download script
if s and autodownload: # download script
root = path.parent if 'path' in data else '..' # unzip directory i.e. '../'
if s.startswith('http') and s.endswith('.zip'): # URL
f = Path(s).name # filename
print(f'Downloading {s} ...')
print(f'Downloading {s} to {f}...')
torch.hub.download_url_to_file(s, f)
r = os.system(f'unzip -q {f} -d ../ && rm {f}') # unzip
Path(root).mkdir(parents=True, exist_ok=True) # create root
ZipFile(f).extractall(path=root) # unzip
Path(f).unlink() # remove zip
r = None # success
elif s.startswith('bash '): # bash script
print(f'Running {s} ...')
r = os.system(s)
else: # python script
r = exec(s) # return None
print('Dataset autodownload %s\n' % ('success' if r in (0, None) else 'failure')) # print result
r = exec(s, {'yaml': data}) # return None
print(f"Dataset autodownload {f'success, saved to {root}' if r in (0, None) else 'failure'}\n")
else:
raise Exception('Dataset not found.')
return data # dictionary
def url2file(url):
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
file = Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
return file
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
# Multi-threaded file download and unzip function
# Multi-threaded file download and unzip function, used in data.yaml for autodownload
def download_one(url, dir):
# Download 1 file
f = dir / Path(url).name # filename
if not f.exists():
if Path(url).is_file(): # exists in current path
Path(url).rename(f) # move to dir
elif not f.exists():
print(f'Downloading {url} to {f}...')
if curl:
os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
@ -227,12 +436,11 @@ def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
if unzip and f.suffix in ('.zip', '.gz'):
print(f'Unzipping {f}...')
if f.suffix == '.zip':
s = f'unzip -qo {f} -d {dir} && rm {f}' # unzip -quiet -overwrite
ZipFile(f).extractall(path=dir) # unzip
elif f.suffix == '.gz':
s = f'tar xfz {f} --directory {f.parent}' # unzip
if delete: # delete zip file after unzip
s += f' && rm {f}'
os.system(s)
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
if delete:
f.unlink() # remove zip
dir = Path(dir)
dir.mkdir(parents=True, exist_ok=True) # make directory
@ -242,7 +450,7 @@ def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
pool.close()
pool.join()
else:
for u in tuple(url) if isinstance(url, str) else url:
for u in [url] if isinstance(url, (str, Path)) else url:
download_one(u, dir)
@ -257,7 +465,7 @@ def clean_str(s):
def one_cycle(y1=0.0, y2=1.0, steps=100):
# lambda function for sinusoidal ramp from y1 to y2
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
@ -355,6 +563,18 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
return y
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
if clip:
clip_coords(x, (h - eps, w - eps)) # warning: inplace clip
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
y[:, 2] = (x[:, 2] - x[:, 0]) / w # width
y[:, 3] = (x[:, 3] - x[:, 1]) / h # height
return y
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
# Convert normalized segments into pixel segments, shape (n,2)
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
@ -405,90 +625,16 @@ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
return coords
def clip_coords(boxes, img_shape):
def clip_coords(boxes, shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
boxes[:, 0].clamp_(0, img_shape[1]) # x1
boxes[:, 1].clamp_(0, img_shape[0]) # y1
boxes[:, 2].clamp_(0, img_shape[1]) # x2
boxes[:, 3].clamp_(0, img_shape[0]) # y2
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
def wh_iou(wh1, wh2):
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
wh1 = wh1[:, None] # [N,1,2]
wh2 = wh2[None] # [1,M,2]
inter = torch.min(wh1, wh2).prod(2) # [N,M]
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
if isinstance(boxes, torch.Tensor): # faster individually
boxes[:, 0].clamp_(0, shape[1]) # x1
boxes[:, 1].clamp_(0, shape[0]) # y1
boxes[:, 2].clamp_(0, shape[1]) # x2
boxes[:, 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
@ -601,39 +747,48 @@ def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_op
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
# Print mutation results to evolve.txt (for use with train.py --evolve)
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
def print_mutation(results, hyp, save_dir, bucket):
evolve_csv, results_csv, evolve_yaml = save_dir / 'evolve.csv', save_dir / 'results.csv', save_dir / 'hyp_evolve.yaml'
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
keys = tuple(x.strip() for x in keys)
vals = results + tuple(hyp.values())
n = len(keys)
# Download (optional)
if bucket:
url = 'gs://%s/evolve.txt' % bucket
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
url = f'gs://{bucket}/evolve.csv'
if gsutil_getsize(url) > (os.path.getsize(evolve_csv) if os.path.exists(evolve_csv) else 0):
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
with open('evolve.txt', 'a') as f: # append result
f.write(c + b + '\n')
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
x = x[np.argsort(-fitness(x))] # sort
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
# Log to evolve.csv
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
with open(evolve_csv, 'a') as f:
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
# Print to screen
print(colorstr('evolve: ') + ', '.join(f'{x.strip():>20s}' for x in keys))
print(colorstr('evolve: ') + ', '.join(f'{x:20.5g}' for x in vals), end='\n\n\n')
# Save yaml
for i, k in enumerate(hyp.keys()):
hyp[k] = float(x[0, i + 7])
with open(yaml_file, 'w') as f:
results = tuple(x[0, :7])
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
with open(evolve_yaml, 'w') as f:
data = pd.read_csv(evolve_csv)
data = data.rename(columns=lambda x: x.strip()) # strip keys
i = np.argmax(fitness(data.values[:, :7])) #
f.write('# YOLOv3 Hyperparameter Evolution Results\n' +
f'# Best generation: {i}\n' +
f'# Last generation: {len(data)}\n' +
'# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + '\n' +
'# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
yaml.safe_dump(hyp, f, sort_keys=False)
if bucket:
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
def apply_classifier(x, model, img, im0):
# Apply a second stage classifier to yolo outputs
# Apply a second stage classifier to YOLO outputs
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
im0 = [im0] if isinstance(im0, np.ndarray) else im0
for i, d in enumerate(x): # per image
if d is not None and len(d):
@ -654,11 +809,11 @@ def apply_classifier(x, model, img, im0):
for j, a in enumerate(d): # per item
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
im = cv2.resize(cutout, (224, 224)) # BGR
# cv2.imwrite('test%i.jpg' % j, cutout)
# cv2.imwrite('example%i.jpg' % j, cutout)
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
im /= 255.0 # 0 - 255 to 0.0 - 1.0
im /= 255 # 0 - 255 to 0.0 - 1.0
ims.append(im)
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
@ -667,33 +822,20 @@ def apply_classifier(x, model, img, im0):
return x
def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_coords(xyxy, im.shape)
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
if save:
cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop)
return crop
def increment_path(path, exist_ok=False, sep='', mkdir=False):
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
path = Path(path) # os-agnostic
if path.exists() and not exist_ok:
suffix = path.suffix
path = path.with_suffix('')
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
dirs = glob.glob(f"{path}{sep}*") # similar paths
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m] # indices
n = max(i) + 1 if i else 2 # increment number
path = Path(f"{path}{sep}{n}{suffix}") # update path
dir = path if path.suffix == '' else path.parent # directory
if not dir.exists() and mkdir:
dir.mkdir(parents=True, exist_ok=True) # make directory
path = Path(f"{path}{sep}{n}{suffix}") # increment path
if mkdir:
path.mkdir(parents=True, exist_ok=True) # make directory
return path
# Variables
NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size

View File

@ -1,25 +0,0 @@
FROM gcr.io/google-appengine/python
# Create a virtualenv for dependencies. This isolates these packages from
# system-level packages.
# Use -p python3 or -p python3.7 to select python version. Default is version 2.
RUN virtualenv /env -p python3
# Setting these environment variables are the same as running
# source /env/bin/activate.
ENV VIRTUAL_ENV /env
ENV PATH /env/bin:$PATH
RUN apt-get update && apt-get install -y python-opencv
# Copy the application's requirements.txt and run pip to install all
# dependencies into the virtualenv.
ADD requirements.txt /app/requirements.txt
RUN pip install -r /app/requirements.txt
# Add the application source code.
ADD . /app
# Run a WSGI server to serve the application. gunicorn must be declared as
# a dependency in requirements.txt.
CMD gunicorn -b :$PORT main:app

View File

@ -1,4 +0,0 @@
# add these requirements in your app on top of the existing ones
pip==19.2
Flask==1.0.2
gunicorn==19.9.0

View File

@ -1,14 +0,0 @@
runtime: custom
env: flex
service: yolov3app
liveness_check:
initial_delay_sec: 600
manual_scaling:
instances: 1
resources:
cpu: 1
memory_gb: 4
disk_size_gb: 20

156
utils/loggers/__init__.py Normal file
View File

@ -0,0 +1,156 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Logging utils
"""
import os
import warnings
from threading import Thread
import pkg_resources as pkg
import torch
from torch.utils.tensorboard import SummaryWriter
from utils.general import colorstr, emojis
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_results
from utils.torch_utils import de_parallel
LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
RANK = int(os.getenv('RANK', -1))
try:
import wandb
assert hasattr(wandb, '__version__') # verify package import not local dir
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in [0, -1]:
wandb_login_success = wandb.login(timeout=30)
if not wandb_login_success:
wandb = None
except (ImportError, AssertionError):
wandb = None
class Loggers():
# Loggers class
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
self.save_dir = save_dir
self.weights = weights
self.opt = opt
self.hyp = hyp
self.logger = logger # for printing results to console
self.include = include
self.keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
for k in LOGGERS:
setattr(self, k, None) # init empty logger dictionary
self.csv = True # always log to csv
# Message
if not wandb:
prefix = colorstr('Weights & Biases: ')
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv3 🚀 runs (RECOMMENDED)"
print(emojis(s))
# TensorBoard
s = self.save_dir
if 'tb' in self.include and not self.opt.evolve:
prefix = colorstr('TensorBoard: ')
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
self.tb = SummaryWriter(str(s))
# W&B
if wandb and 'wandb' in self.include:
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
self.opt.hyp = self.hyp # add hyperparameters
self.wandb = WandbLogger(self.opt, run_id)
else:
self.wandb = None
def on_pretrain_routine_end(self):
# Callback runs on pre-train routine end
paths = self.save_dir.glob('*labels*.jpg') # training labels
if self.wandb:
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
def on_train_batch_end(self, ni, model, imgs, targets, paths, plots, sync_bn):
# Callback runs on train batch end
if plots:
if ni == 0:
if not sync_bn: # tb.add_graph() --sync known issue https://github.com/ultralytics/yolov5/issues/3754
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress jit trace warning
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
if ni < 3:
f = self.save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
if self.wandb and ni == 10:
files = sorted(self.save_dir.glob('train*.jpg'))
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
def on_train_epoch_end(self, epoch):
# Callback runs on train epoch end
if self.wandb:
self.wandb.current_epoch = epoch + 1
def on_val_image_end(self, pred, predn, path, names, im):
# Callback runs on val image end
if self.wandb:
self.wandb.val_one_image(pred, predn, path, names, im)
def on_val_end(self):
# Callback runs on val end
if self.wandb:
files = sorted(self.save_dir.glob('val*.jpg'))
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
# Callback runs at the end of each fit (train+val) epoch
x = {k: v for k, v in zip(self.keys, vals)} # dict
if self.csv:
file = self.save_dir / 'results.csv'
n = len(x) + 1 # number of cols
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
with open(file, 'a') as f:
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
if self.tb:
for k, v in x.items():
self.tb.add_scalar(k, v, epoch)
if self.wandb:
self.wandb.log(x)
self.wandb.end_epoch(best_result=best_fitness == fi)
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
# Callback runs on model save event
if self.wandb:
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
def on_train_end(self, last, best, plots, epoch, results):
# Callback runs on training end
if plots:
plot_results(file=self.save_dir / 'results.csv') # save results.png
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
if self.tb:
import cv2
for f in files:
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
if self.wandb:
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
if not self.opt.evolve:
wandb.log_artifact(str(best if best.exists() else last), type='model',
name='run_' + self.wandb.wandb_run.id + '_model',
aliases=['latest', 'best', 'stripped'])
self.wandb.finish_run()
else:
self.wandb.finish_run()
self.wandb = WandbLogger(self.opt)

View File

@ -0,0 +1,147 @@
📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv3 🚀. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv3') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv3 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3>1. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 2: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data .. --upload_data </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
</details>
<h3> Reports </h3>
W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
<img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png">
## Environments
YOLOv3 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
## Status
![CI CPU testing](https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg)
If this badge is green, all [YOLOv3 GitHub Actions](https://github.com/ultralytics/yolov3/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv3 training ([train.py](https://github.com/ultralytics/yolov3/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov3/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov3/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov3/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

View File

@ -1,16 +1,16 @@
import argparse
import yaml
from wandb_utils import WandbLogger
from utils.general import LOGGER
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
def create_dataset_artifact(opt):
with open(opt.data) as f:
data = yaml.safe_load(f) # data dict
logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused
if not logger.wandb:
LOGGER.info("install wandb using `pip install wandb` to log the dataset")
if __name__ == '__main__':
@ -18,6 +18,9 @@ if __name__ == '__main__':
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--project', type=str, default='YOLOv3', help='name of W&B Project')
parser.add_argument('--entity', default=None, help='W&B entity')
parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
opt = parser.parse_args()
opt.resume = False # Explicitly disallow resume check for dataset upload job

View File

@ -0,0 +1,41 @@
import sys
from pathlib import Path
import wandb
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
from train import parse_opt, train
from utils.callbacks import Callbacks
from utils.general import increment_path
from utils.torch_utils import select_device
def sweep():
wandb.init()
# Get hyp dict from sweep agent
hyp_dict = vars(wandb.config).get("_items")
# Workaround: get necessary opt args
opt = parse_opt(known=True)
opt.batch_size = hyp_dict.get("batch_size")
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
opt.epochs = hyp_dict.get("epochs")
opt.nosave = True
opt.data = hyp_dict.get("data")
opt.weights = str(opt.weights)
opt.cfg = str(opt.cfg)
opt.data = str(opt.data)
opt.hyp = str(opt.hyp)
opt.project = str(opt.project)
device = select_device(opt.device, batch_size=opt.batch_size)
# train
train(hyp_dict, opt, device, callbacks=Callbacks())
if __name__ == "__main__":
sweep()

View File

@ -0,0 +1,143 @@
# Hyperparameters for training
# To set range-
# Provide min and max values as:
# parameter:
#
# min: scalar
# max: scalar
# OR
#
# Set a specific list of search space-
# parameter:
# values: [scalar1, scalar2, scalar3...]
#
# You can use grid, bayesian and hyperopt search strategy
# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
program: utils/loggers/wandb/sweep.py
method: random
metric:
name: metrics/mAP_0.5
goal: maximize
parameters:
# hyperparameters: set either min, max range or values list
data:
value: "data/coco128.yaml"
batch_size:
values: [64]
epochs:
values: [10]
lr0:
distribution: uniform
min: 1e-5
max: 1e-1
lrf:
distribution: uniform
min: 0.01
max: 1.0
momentum:
distribution: uniform
min: 0.6
max: 0.98
weight_decay:
distribution: uniform
min: 0.0
max: 0.001
warmup_epochs:
distribution: uniform
min: 0.0
max: 5.0
warmup_momentum:
distribution: uniform
min: 0.0
max: 0.95
warmup_bias_lr:
distribution: uniform
min: 0.0
max: 0.2
box:
distribution: uniform
min: 0.02
max: 0.2
cls:
distribution: uniform
min: 0.2
max: 4.0
cls_pw:
distribution: uniform
min: 0.5
max: 2.0
obj:
distribution: uniform
min: 0.2
max: 4.0
obj_pw:
distribution: uniform
min: 0.5
max: 2.0
iou_t:
distribution: uniform
min: 0.1
max: 0.7
anchor_t:
distribution: uniform
min: 2.0
max: 8.0
fl_gamma:
distribution: uniform
min: 0.0
max: 0.1
hsv_h:
distribution: uniform
min: 0.0
max: 0.1
hsv_s:
distribution: uniform
min: 0.0
max: 0.9
hsv_v:
distribution: uniform
min: 0.0
max: 0.9
degrees:
distribution: uniform
min: 0.0
max: 45.0
translate:
distribution: uniform
min: 0.0
max: 0.9
scale:
distribution: uniform
min: 0.0
max: 0.9
shear:
distribution: uniform
min: 0.0
max: 10.0
perspective:
distribution: uniform
min: 0.0
max: 0.001
flipud:
distribution: uniform
min: 0.0
max: 1.0
fliplr:
distribution: uniform
min: 0.0
max: 1.0
mosaic:
distribution: uniform
min: 0.0
max: 1.0
mixup:
distribution: uniform
min: 0.0
max: 1.0
copy_paste:
distribution: uniform
min: 0.0
max: 1.0

View File

@ -0,0 +1,532 @@
"""Utilities and tools for tracking runs with Weights & Biases."""
import logging
import os
import sys
from contextlib import contextmanager
from pathlib import Path
from typing import Dict
import pkg_resources as pkg
import yaml
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
from utils.datasets import LoadImagesAndLabels, img2label_paths
from utils.general import LOGGER, check_dataset, check_file
try:
import wandb
assert hasattr(wandb, '__version__') # verify package import not local dir
except (ImportError, AssertionError):
wandb = None
RANK = int(os.getenv('RANK', -1))
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
return from_string[len(prefix):]
def check_wandb_config_file(data_config_file):
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
if Path(wandb_config).is_file():
return wandb_config
return data_config_file
def check_wandb_dataset(data_file):
is_trainset_wandb_artifact = False
is_valset_wandb_artifact = False
if check_file(data_file) and data_file.endswith('.yaml'):
with open(data_file, errors='ignore') as f:
data_dict = yaml.safe_load(f)
is_trainset_wandb_artifact = (isinstance(data_dict['train'], str) and
data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX))
is_valset_wandb_artifact = (isinstance(data_dict['val'], str) and
data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX))
if is_trainset_wandb_artifact or is_valset_wandb_artifact:
return data_dict
else:
return check_dataset(data_file)
def get_run_info(run_path):
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
run_id = run_path.stem
project = run_path.parent.stem
entity = run_path.parent.parent.stem
model_artifact_name = 'run_' + run_id + '_model'
return entity, project, run_id, model_artifact_name
def check_wandb_resume(opt):
process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
if isinstance(opt.resume, str):
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
if RANK not in [-1, 0]: # For resuming DDP runs
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
api = wandb.Api()
artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
modeldir = artifact.download()
opt.weights = str(Path(modeldir) / "last.pt")
return True
return None
def process_wandb_config_ddp_mode(opt):
with open(check_file(opt.data), errors='ignore') as f:
data_dict = yaml.safe_load(f) # data dict
train_dir, val_dir = None, None
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
api = wandb.Api()
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
train_dir = train_artifact.download()
train_path = Path(train_dir) / 'data/images/'
data_dict['train'] = str(train_path)
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
api = wandb.Api()
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
val_dir = val_artifact.download()
val_path = Path(val_dir) / 'data/images/'
data_dict['val'] = str(val_path)
if train_dir or val_dir:
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
with open(ddp_data_path, 'w') as f:
yaml.safe_dump(data_dict, f)
opt.data = ddp_data_path
class WandbLogger():
"""Log training runs, datasets, models, and predictions to Weights & Biases.
This logger sends information to W&B at wandb.ai. By default, this information
includes hyperparameters, system configuration and metrics, model metrics,
and basic data metrics and analyses.
By providing additional command line arguments to train.py, datasets,
models and predictions can also be logged.
For more on how this logger is used, see the Weights & Biases documentation:
https://docs.wandb.com/guides/integrations/yolov5
"""
def __init__(self, opt, run_id=None, job_type='Training'):
"""
- Initialize WandbLogger instance
- Upload dataset if opt.upload_dataset is True
- Setup trainig processes if job_type is 'Training'
arguments:
opt (namespace) -- Commandline arguments for this run
run_id (str) -- Run ID of W&B run to be resumed
job_type (str) -- To set the job_type for this run
"""
# Pre-training routine --
self.job_type = job_type
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
self.val_artifact, self.train_artifact = None, None
self.train_artifact_path, self.val_artifact_path = None, None
self.result_artifact = None
self.val_table, self.result_table = None, None
self.bbox_media_panel_images = []
self.val_table_path_map = None
self.max_imgs_to_log = 16
self.wandb_artifact_data_dict = None
self.data_dict = None
# It's more elegant to stick to 1 wandb.init call,
# but useful config data is overwritten in the WandbLogger's wandb.init call
if isinstance(opt.resume, str): # checks resume from artifact
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
assert wandb, 'install wandb to resume wandb runs'
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
self.wandb_run = wandb.init(id=run_id,
project=project,
entity=entity,
resume='allow',
allow_val_change=True)
opt.resume = model_artifact_name
elif self.wandb:
self.wandb_run = wandb.init(config=opt,
resume="allow",
project='YOLOv3' if opt.project == 'runs/train' else Path(opt.project).stem,
entity=opt.entity,
name=opt.name if opt.name != 'exp' else None,
job_type=job_type,
id=run_id,
allow_val_change=True) if not wandb.run else wandb.run
if self.wandb_run:
if self.job_type == 'Training':
if opt.upload_dataset:
if not opt.resume:
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
if opt.resume:
# resume from artifact
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
self.data_dict = dict(self.wandb_run.config.data_dict)
else: # local resume
self.data_dict = check_wandb_dataset(opt.data)
else:
self.data_dict = check_wandb_dataset(opt.data)
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict},
allow_val_change=True)
self.setup_training(opt)
if self.job_type == 'Dataset Creation':
self.data_dict = self.check_and_upload_dataset(opt)
def check_and_upload_dataset(self, opt):
"""
Check if the dataset format is compatible and upload it as W&B artifact
arguments:
opt (namespace)-- Commandline arguments for current run
returns:
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
"""
assert wandb, 'Install wandb to upload dataset'
config_path = self.log_dataset_artifact(opt.data,
opt.single_cls,
'YOLOv3' if opt.project == 'runs/train' else Path(opt.project).stem)
LOGGER.info(f"Created dataset config file {config_path}")
with open(config_path, errors='ignore') as f:
wandb_data_dict = yaml.safe_load(f)
return wandb_data_dict
def setup_training(self, opt):
"""
Setup the necessary processes for training YOLO models:
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
- Setup log_dict, initialize bbox_interval
arguments:
opt (namespace) -- commandline arguments for this run
"""
self.log_dict, self.current_epoch = {}, 0
self.bbox_interval = opt.bbox_interval
if isinstance(opt.resume, str):
modeldir, _ = self.download_model_artifact(opt)
if modeldir:
self.weights = Path(modeldir) / "last.pt"
config = self.wandb_run.config
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
config.hyp
data_dict = self.data_dict
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
opt.artifact_alias)
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
opt.artifact_alias)
if self.train_artifact_path is not None:
train_path = Path(self.train_artifact_path) / 'data/images/'
data_dict['train'] = str(train_path)
if self.val_artifact_path is not None:
val_path = Path(self.val_artifact_path) / 'data/images/'
data_dict['val'] = str(val_path)
if self.val_artifact is not None:
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
self.result_table = wandb.Table(["epoch", "id", "ground truth", "prediction", "avg_confidence"])
self.val_table = self.val_artifact.get("val")
if self.val_table_path_map is None:
self.map_val_table_path()
if opt.bbox_interval == -1:
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
# Update the the data_dict to point to local artifacts dir
if train_from_artifact:
self.data_dict = data_dict
def download_dataset_artifact(self, path, alias):
"""
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
arguments:
path -- path of the dataset to be used for training
alias (str)-- alias of the artifact to be download/used for training
returns:
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
is found otherwise returns (None, None)
"""
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
datadir = dataset_artifact.download()
return datadir, dataset_artifact
return None, None
def download_model_artifact(self, opt):
"""
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
arguments:
opt (namespace) -- Commandline arguments for this run
"""
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
modeldir = model_artifact.download()
epochs_trained = model_artifact.metadata.get('epochs_trained')
total_epochs = model_artifact.metadata.get('total_epochs')
is_finished = total_epochs is None
assert not is_finished, 'training is finished, can only resume incomplete runs.'
return modeldir, model_artifact
return None, None
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
"""
Log the model checkpoint as W&B artifact
arguments:
path (Path) -- Path of directory containing the checkpoints
opt (namespace) -- Command line arguments for this run
epoch (int) -- Current epoch number
fitness_score (float) -- fitness score for current epoch
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
"""
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
'original_url': str(path),
'epochs_trained': epoch + 1,
'save period': opt.save_period,
'project': opt.project,
'total_epochs': opt.epochs,
'fitness_score': fitness_score
})
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
wandb.log_artifact(model_artifact,
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
"""
Log the dataset as W&B artifact and return the new data file with W&B links
arguments:
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
single_class (boolean) -- train multi-class data as single-class
project (str) -- project name. Used to construct the artifact path
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
file with _wandb postfix. Eg -> data_wandb.yaml
returns:
the new .yaml file with artifact links. it can be used to start training directly from artifacts
"""
self.data_dict = check_dataset(data_file) # parse and check
data = dict(self.data_dict)
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
names = {k: v for k, v in enumerate(names)} # to index dictionary
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
data['train'], rect=True, batch_size=1), names, name='train') if data.get('train') else None
self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
if data.get('train'):
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
if data.get('val'):
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
path = Path(data_file).stem
path = (path if overwrite_config else path + '_wandb') + '.yaml' # updated data.yaml path
data.pop('download', None)
data.pop('path', None)
with open(path, 'w') as f:
yaml.safe_dump(data, f)
if self.job_type == 'Training': # builds correct artifact pipeline graph
self.wandb_run.use_artifact(self.val_artifact)
self.wandb_run.use_artifact(self.train_artifact)
self.val_artifact.wait()
self.val_table = self.val_artifact.get('val')
self.map_val_table_path()
else:
self.wandb_run.log_artifact(self.train_artifact)
self.wandb_run.log_artifact(self.val_artifact)
return path
def map_val_table_path(self):
"""
Map the validation dataset Table like name of file -> it's id in the W&B Table.
Useful for - referencing artifacts for evaluation.
"""
self.val_table_path_map = {}
LOGGER.info("Mapping dataset")
for i, data in enumerate(tqdm(self.val_table.data)):
self.val_table_path_map[data[3]] = data[0]
def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int,str], name: str = 'dataset'):
"""
Create and return W&B artifact containing W&B Table of the dataset.
arguments:
dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
class_to_id -- hash map that maps class ids to labels
name -- name of the artifact
returns:
dataset artifact to be logged or used
"""
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
artifact = wandb.Artifact(name=name, type="dataset")
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
img_files = tqdm(dataset.img_files) if not img_files else img_files
for img_file in img_files:
if Path(img_file).is_dir():
artifact.add_dir(img_file, name='data/images')
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
artifact.add_dir(labels_path, name='data/labels')
else:
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
label_file = Path(img2label_paths([img_file])[0])
artifact.add_file(str(label_file),
name='data/labels/' + label_file.name) if label_file.exists() else None
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
box_data, img_classes = [], {}
for cls, *xywh in labels[:, 1:].tolist():
cls = int(cls)
box_data.append({"position": {"middle": [xywh[0], xywh[1]], "width": xywh[2], "height": xywh[3]},
"class_id": cls,
"box_caption": "%s" % (class_to_id[cls])})
img_classes[cls] = class_to_id[cls]
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
Path(paths).name)
artifact.add(table, name)
return artifact
def log_training_progress(self, predn, path, names):
"""
Build evaluation Table. Uses reference from validation dataset table.
arguments:
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
path (str): local path of the current evaluation image
names (dict(int, str)): hash map that maps class ids to labels
"""
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
box_data = []
total_conf = 0
for *xyxy, conf, cls in predn.tolist():
if conf >= 0.25:
box_data.append(
{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": f"{names[cls]} {conf:.3f}",
"scores": {"class_score": conf},
"domain": "pixel"})
total_conf += conf
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
id = self.val_table_path_map[Path(path).name]
self.result_table.add_data(self.current_epoch,
id,
self.val_table.data[id][1],
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
total_conf / max(1, len(box_data))
)
def val_one_image(self, pred, predn, path, names, im):
"""
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
arguments:
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
path (str): local path of the current evaluation image
"""
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
self.log_training_progress(predn, path, names)
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
if self.current_epoch % self.bbox_interval == 0:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": f"{names[cls]} {conf:.3f}",
"scores": {"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
def log(self, log_dict):
"""
save the metrics to the logging dictionary
arguments:
log_dict (Dict) -- metrics/media to be logged in current step
"""
if self.wandb_run:
for key, value in log_dict.items():
self.log_dict[key] = value
def end_epoch(self, best_result=False):
"""
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
arguments:
best_result (boolean): Boolean representing if the result of this evaluation is best or not
"""
if self.wandb_run:
with all_logging_disabled():
if self.bbox_media_panel_images:
self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
try:
wandb.log(self.log_dict)
except BaseException as e:
LOGGER.info(f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}")
self.wandb_run.finish()
self.wandb_run = None
self.log_dict = {}
self.bbox_media_panel_images = []
if self.result_artifact:
self.result_artifact.add(self.result_table, 'result')
wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch),
('best' if best_result else '')])
wandb.log({"evaluation": self.result_table})
self.result_table = wandb.Table(["epoch", "id", "ground truth", "prediction", "avg_confidence"])
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
def finish_run(self):
"""
Log metrics if any and finish the current W&B run
"""
if self.wandb_run:
if self.log_dict:
with all_logging_disabled():
wandb.log(self.log_dict)
wandb.run.finish()
@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
""" source - https://gist.github.com/simon-weber/7853144
A context manager that will prevent any logging messages triggered during the body from being processed.
:param highest_level: the maximum logging level in use.
This would only need to be changed if a custom level greater than CRITICAL is defined.
"""
previous_level = logging.root.manager.disable
logging.disable(highest_level)
try:
yield
finally:
logging.disable(previous_level)

View File

@ -1,9 +1,12 @@
# Loss functions
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Loss functions
"""
import torch
import torch.nn as nn
from utils.general import bbox_iou
from utils.metrics import bbox_iou
from utils.torch_utils import is_parallel
@ -15,7 +18,7 @@ def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#iss
class BCEBlurWithLogitsLoss(nn.Module):
# BCEwithLogitLoss() with reduced missing label effects.
def __init__(self, alpha=0.05):
super(BCEBlurWithLogitsLoss, self).__init__()
super().__init__()
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
self.alpha = alpha
@ -32,7 +35,7 @@ class BCEBlurWithLogitsLoss(nn.Module):
class FocalLoss(nn.Module):
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super(FocalLoss, self).__init__()
super().__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
@ -62,7 +65,7 @@ class FocalLoss(nn.Module):
class QFocalLoss(nn.Module):
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super(QFocalLoss, self).__init__()
super().__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
@ -88,7 +91,7 @@ class QFocalLoss(nn.Module):
class ComputeLoss:
# Compute losses
def __init__(self, model, autobalance=False):
super(ComputeLoss, self).__init__()
self.sort_obj_iou = False
device = next(model.parameters()).device # get model device
h = model.hyp # hyperparameters
@ -105,9 +108,9 @@ class ComputeLoss:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
for k in 'na', 'nc', 'nl', 'anchors':
setattr(self, k, getattr(det, k))
@ -126,14 +129,18 @@ class ComputeLoss:
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
# Regression
pxy = ps[:, :2].sigmoid() * 2. - 0.5
pxy = ps[:, :2].sigmoid() * 2 - 0.5
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
score_iou = iou.detach().clamp(0).type(tobj.dtype)
if self.sort_obj_iou:
sort_id = torch.argsort(score_iou)
b, a, gj, gi, score_iou = b[sort_id], a[sort_id], gj[sort_id], gi[sort_id], score_iou[sort_id]
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * score_iou # iou ratio
# Classification
if self.nc > 1: # cls loss (only if multiple classes)
@ -157,8 +164,7 @@ class ComputeLoss:
lcls *= self.hyp['cls']
bs = tobj.shape[0] # batch size
loss = lbox + lobj + lcls
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
def build_targets(self, p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
@ -170,7 +176,7 @@ class ComputeLoss:
g = 0.5 # bias
off = torch.tensor([[0, 0],
# [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
], device=targets.device).float() * g # offsets
@ -183,17 +189,17 @@ class ComputeLoss:
if nt:
# Matches
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
j = torch.stack((torch.ones_like(j),))
t = t.repeat((off.shape[0], 1, 1))[j]
j, k = ((gxy % 1 < g) & (gxy > 1)).T
l, m = ((gxi % 1 < g) & (gxi > 1)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]

View File

@ -1,13 +1,16 @@
# Model validation metrics
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Model validation metrics
"""
import math
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
from . import general
def fitness(x):
# Model fitness as a weighted combination of metrics
@ -68,6 +71,8 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + 1e-16)
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
names = {i: v for i, v in enumerate(names)} # to dict
if plot:
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
@ -88,8 +93,8 @@ def compute_ap(recall, precision):
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
mpre = np.concatenate(([1.], precision, [0.]))
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
@ -127,7 +132,7 @@ class ConfusionMatrix:
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 0].int()
detection_classes = detections[:, 5].int()
iou = general.box_iou(labels[:, 1:], detections[:, :4])
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
@ -157,30 +162,135 @@ class ConfusionMatrix:
def matrix(self):
return self.matrix
def plot(self, save_dir='', names=()):
def plot(self, normalize=True, save_dir='', names=()):
try:
import seaborn as sn
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-6) if normalize else 1) # normalize columns
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig = plt.figure(figsize=(12, 9), tight_layout=True)
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
xticklabels=names + ['background FP'] if labels else "auto",
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
fig.axes[0].set_xlabel('True')
fig.axes[0].set_ylabel('Predicted')
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
plt.close()
except Exception as e:
pass
print(f'WARNING: ConfusionMatrix plot failure: {e}')
def print(self):
for i in range(self.nc + 1):
print(' '.join(map(str, self.matrix[i])))
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
def bbox_ioa(box1, box2, eps=1E-7):
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
box1: np.array of shape(4)
box2: np.array of shape(nx4)
returns: np.array of shape(n)
"""
box2 = box2.transpose()
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
# Intersection area
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
# Intersection over box2 area
return inter_area / box2_area
def wh_iou(wh1, wh2):
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
wh1 = wh1[:, None] # [N,1,2]
wh2 = wh2[None] # [1,M,2]
inter = torch.min(wh1, wh2).prod(2) # [N,M]
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
# Plots ----------------------------------------------------------------------------------------------------------------
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
@ -201,6 +311,7 @@ def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir), dpi=250)
plt.close()
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
@ -221,3 +332,4 @@ def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence'
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir), dpi=250)
plt.close()

View File

@ -1,9 +1,10 @@
# Plotting utils
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Plotting utils
"""
import glob
import math
import os
import random
from copy import copy
from pathlib import Path
@ -12,15 +13,17 @@ import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import seaborn as sn
import torch
import yaml
from PIL import Image, ImageDraw, ImageFont
from utils.general import xywh2xyxy, xyxy2xywh
from utils.general import (LOGGER, Timeout, check_requirements, clip_coords, increment_path, is_ascii, is_chinese,
try_except, user_config_dir, xywh2xyxy, xyxy2xywh)
from utils.metrics import fitness
# Settings
CONFIG_DIR = user_config_dir() # Ultralytics settings dir
RANK = int(os.getenv('RANK', -1))
matplotlib.rc('font', **{'size': 11})
matplotlib.use('Agg') # for writing to files only
@ -46,6 +49,105 @@ class Colors:
colors = Colors() # create instance for 'from utils.plots import colors'
def check_font(font='Arial.ttf', size=10):
# Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
font = Path(font)
font = font if font.exists() else (CONFIG_DIR / font.name)
try:
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
except Exception as e: # download if missing
url = "https://ultralytics.com/assets/" + font.name
print(f'Downloading {url} to {font}...')
torch.hub.download_url_to_file(url, str(font), progress=False)
try:
return ImageFont.truetype(str(font), size)
except TypeError:
check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
class Annotator:
if RANK in (-1, 0):
check_font() # download TTF if necessary
# Annotator for train/val mosaics and jpgs and detect/hub inference annotations
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
self.pil = pil or not is_ascii(example) or is_chinese(example)
if self.pil: # use PIL
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
self.font = check_font(font='Arial.Unicode.ttf' if is_chinese(example) else font,
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
else: # use cv2
self.im = im
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
# Add one xyxy box to image with label
if self.pil or not is_ascii(label):
self.draw.rectangle(box, width=self.lw, outline=color) # box
if label:
w, h = self.font.getsize(label) # text width, height
outside = box[1] - h >= 0 # label fits outside box
self.draw.rectangle([box[0],
box[1] - h if outside else box[1],
box[0] + w + 1,
box[1] + 1 if outside else box[1] + h + 1], fill=color)
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
else: # cv2
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
if label:
tf = max(self.lw - 1, 1) # font thickness
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
outside = p1[1] - h - 3 >= 0 # label fits outside box
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color,
thickness=tf, lineType=cv2.LINE_AA)
def rectangle(self, xy, fill=None, outline=None, width=1):
# Add rectangle to image (PIL-only)
self.draw.rectangle(xy, fill, outline, width)
def text(self, xy, text, txt_color=(255, 255, 255)):
# Add text to image (PIL-only)
w, h = self.font.getsize(text) # text width, height
self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font)
def result(self):
# Return annotated image as array
return np.asarray(self.im)
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
"""
x: Features to be visualized
module_type: Module type
stage: Module stage within model
n: Maximum number of feature maps to plot
save_dir: Directory to save results
"""
if 'Detect' not in module_type:
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis('off')
print(f'Saving {save_dir / f}... ({n}/{channels})')
plt.savefig(save_dir / f, dpi=300, bbox_inches='tight')
plt.close()
def hist2d(x, y, n=100):
# 2d histogram used in labels.png and evolve.png
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
@ -68,54 +170,6 @@ def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
return filtfilt(b, a, data) # forward-backward filter
def plot_one_box(x, im, color=(128, 128, 128), label=None, line_thickness=3):
# Plots one bounding box on image 'im' using OpenCV
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1 # line/font thickness
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def plot_one_box_PIL(box, im, color=(128, 128, 128), label=None, line_thickness=None):
# Plots one bounding box on image 'im' using PIL
im = Image.fromarray(im)
draw = ImageDraw.Draw(im)
line_thickness = line_thickness or max(int(min(im.size) / 200), 2)
draw.rectangle(box, width=line_thickness, outline=color) # plot
if label:
font = ImageFont.truetype("Arial.ttf", size=max(round(max(im.size) / 40), 12))
txt_width, txt_height = font.getsize(label)
draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=color)
draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
return np.asarray(im)
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
fig = plt.figure(figsize=(6, 3), tight_layout=True)
plt.plot(x, ya, '.-', label='YOLOv3')
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.grid()
plt.legend()
fig.savefig('comparison.png', dpi=200)
def output_to_target(output):
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
targets = []
@ -125,82 +179,65 @@ def output_to_target(output):
return np.array(targets)
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(targets, torch.Tensor):
targets = targets.cpu().numpy()
# un-normalise
if np.max(images[0]) <= 1:
images *= 255
tl = 3 # line thickness
tf = max(tl - 1, 1) # font thickness
images *= 255 # de-normalise (optional)
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
# Check if we should resize
scale_factor = max_size / max(h, w)
if scale_factor < 1:
h = math.ceil(scale_factor * h)
w = math.ceil(scale_factor * w)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, img in enumerate(images):
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y:y + h, x:x + w, :] = im
block_x = int(w * (i // ns))
block_y = int(h * (i % ns))
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
img = img.transpose(1, 2, 0)
if scale_factor < 1:
img = cv2.resize(img, (w, h))
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(targets) > 0:
image_targets = targets[targets[:, 0] == i]
boxes = xywh2xyxy(image_targets[:, 2:6]).T
classes = image_targets[:, 1].astype('int')
labels = image_targets.shape[1] == 6 # labels if no conf column
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
ti = targets[targets[:, 0] == i] # image targets
boxes = xywh2xyxy(ti[:, 2:6]).T
classes = ti[:, 1].astype('int')
labels = ti.shape[1] == 6 # labels if no conf column
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale_factor < 1: # absolute coords need scale if image scales
boxes *= scale_factor
boxes[[0, 2]] += block_x
boxes[[1, 3]] += block_y
for j, box in enumerate(boxes.T):
cls = int(classes[j])
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
cls = classes[j]
color = colors(cls)
cls = names[cls] if names else cls
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
# Draw image filename labels
if paths:
label = Path(paths[i]).name[:40] # trim to 40 char
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
lineType=cv2.LINE_AA)
# Image border
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
if fname:
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
Image.fromarray(mosaic).save(fname) # PIL save
return mosaic
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
annotator.box_label(box, label, color=color)
annotator.im.save(fname) # save
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
@ -220,9 +257,9 @@ def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
plt.close()
def plot_test_txt(): # from utils.plots import *; plot_test()
# Plot test.txt histograms
x = np.loadtxt('test.txt', dtype=np.float32)
def plot_val_txt(): # from utils.plots import *; plot_val()
# Plot val.txt histograms
x = np.loadtxt('val.txt', dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
@ -244,29 +281,32 @@ def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
ax = ax.ravel()
for i in range(4):
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
ax[i].legend()
ax[i].set_title(s[i])
plt.savefig('targets.jpg', dpi=200)
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
# Plot study.txt generated by test.py
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
# ax = ax.ravel()
def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
save_dir = Path(file).parent if file else Path(dir)
plot2 = False # plot additional results
if plot2:
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
# for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov3-tiny', 'yolov3', 'yolov3-spp', 'yolov5l']]:
for f in sorted(Path(path).glob('study*.txt')):
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov3', 'yolov3-spp', 'yolov3-tiny']]:
for f in sorted(save_dir.glob('study*.txt')):
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
# for i in range(7):
# ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
# ax[i].set_title(s[i])
if plot2:
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
for i in range(7):
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
ax[i].set_title(s[i])
j = y[3].argmax() + 1
ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
ax2.plot(y[5, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
@ -275,22 +315,26 @@ def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_tx
ax2.grid(alpha=0.2)
ax2.set_yticks(np.arange(20, 60, 5))
ax2.set_xlim(0, 57)
ax2.set_ylim(15, 55)
ax2.set_ylim(25, 55)
ax2.set_xlabel('GPU Speed (ms/img)')
ax2.set_ylabel('COCO AP val')
ax2.legend(loc='lower right')
plt.savefig(str(Path(path).name) + '.png', dpi=300)
f = save_dir / 'study.png'
print(f'Saving {f}...')
plt.savefig(f, dpi=300)
def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
@try_except # known issue https://github.com/ultralytics/yolov5/issues/5395
@Timeout(30) # known issue https://github.com/ultralytics/yolov5/issues/5611
def plot_labels(labels, names=(), save_dir=Path('')):
# plot dataset labels
print('Plotting labels... ')
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
nc = int(c.max() + 1) # number of classes
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
# seaborn correlogram
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
plt.close()
@ -305,8 +349,8 @@ def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
ax[0].set_xticklabels(names, rotation=90, fontsize=10)
else:
ax[0].set_xlabel('classes')
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
# rectangles
labels[:, 1:3] = 0.5 # center
@ -325,34 +369,57 @@ def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
matplotlib.use('Agg')
plt.close()
# loggers
for k, v in loggers.items() or {}:
if k == 'wandb' and v:
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
# Plot hyperparameter evolution results in evolve.txt
with open(yaml_file) as f:
hyp = yaml.safe_load(f)
x = np.loadtxt('evolve.txt', ndmin=2)
def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
# Plot evolve.csv hyp evolution results
evolve_csv = Path(evolve_csv)
data = pd.read_csv(evolve_csv)
keys = [x.strip() for x in data.columns]
x = data.values
f = fitness(x)
# weights = (f - f.min()) ** 2 # for weighted results
j = np.argmax(f) # max fitness index
plt.figure(figsize=(10, 12), tight_layout=True)
matplotlib.rc('font', **{'size': 8})
for i, (k, v) in enumerate(hyp.items()):
y = x[:, i + 7]
# mu = (y * weights).sum() / weights.sum() # best weighted result
mu = y[f.argmax()] # best single result
for i, k in enumerate(keys[7:]):
v = x[:, 7 + i]
mu = v[j] # best single result
plt.subplot(6, 5, i + 1)
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
plt.plot(mu, f.max(), 'k+', markersize=15)
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
if i % 5 != 0:
plt.yticks([])
print('%15s: %.3g' % (k, mu))
plt.savefig('evolve.png', dpi=200)
print('\nPlot saved as evolve.png')
print(f'{k:>15}: {mu:.3g}')
f = evolve_csv.with_suffix('.png') # filename
plt.savefig(f, dpi=200)
plt.close()
print(f'Saved {f}')
def plot_results(file='path/to/results.csv', dir=''):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
files = list(save_dir.glob('results*.csv'))
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
for fi, f in enumerate(files):
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
y = data.values[:, j]
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print(f'Warning: Plotting error for {f}: {e}')
ax[1].legend()
fig.savefig(save_dir / 'results.png', dpi=200)
plt.close()
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
@ -381,66 +448,22 @@ def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
else:
a.remove()
except Exception as e:
print('Warning: Plotting error for %s; %s' % (f, e))
print(f'Warning: Plotting error for {f}; {e}')
ax[1].legend()
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
# Plot training 'results*.txt', overlaying train and val losses
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
ax = ax.ravel()
for i in range(5):
for j in [i, i + 5]:
y = results[j, x]
ax[i].plot(x, y, marker='.', label=s[j])
# y_smooth = butter_lowpass_filtfilt(y)
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
ax[i].set_title(t[i])
ax[i].legend()
ax[i].set_ylabel(f) if i == 0 else None # add filename
fig.savefig(f.replace('.txt', '.png'), dpi=200)
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
if bucket:
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
files = ['results%g.txt' % x for x in id]
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
os.system(c)
else:
files = list(Path(save_dir).glob('results*.txt'))
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
for i in range(10):
y = results[i, x]
if i in [0, 1, 2, 5, 6, 7]:
y[y == 0] = np.nan # don't show zero loss values
# y /= y[0] # normalize
label = labels[fi] if len(labels) else f.stem
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
ax[i].set_title(s[i])
# if i in [5, 6, 7]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print('Warning: Plotting error for %s; %s' % (f, e))
ax[1].legend()
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_coords(xyxy, im.shape)
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
cv2.imwrite(str(increment_path(file).with_suffix('.jpg')), crop)
return crop

View File

@ -1,7 +1,9 @@
# YOLOv3 PyTorch utils
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
PyTorch utils
"""
import datetime
import logging
import math
import os
import platform
@ -12,16 +14,16 @@ from copy import deepcopy
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from utils.general import LOGGER
try:
import thop # for FLOPS computation
import thop # for FLOPs computation
except ImportError:
thop = None
logger = logging.getLogger(__name__)
@contextmanager
@ -30,19 +32,10 @@ def torch_distributed_zero_first(local_rank: int):
Decorator to make all processes in distributed training wait for each local_master to do something.
"""
if local_rank not in [-1, 0]:
torch.distributed.barrier()
dist.barrier(device_ids=[local_rank])
yield
if local_rank == 0:
torch.distributed.barrier()
def init_torch_seeds(seed=0):
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(seed)
if seed == 0: # slower, more reproducible
cudnn.benchmark, cudnn.deterministic = False, True
else: # faster, less reproducible
cudnn.benchmark, cudnn.deterministic = True, False
dist.barrier(device_ids=[0])
def date_modified(path=__file__):
@ -60,10 +53,11 @@ def git_describe(path=Path(__file__).parent): # path must be a directory
return '' # not a git repository
def select_device(device='', batch_size=None):
def select_device(device='', batch_size=None, newline=True):
# device = 'cpu' or '0' or '0,1,2,3'
s = f'YOLOv3 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
cpu = device.lower() == 'cpu'
device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0'
cpu = device == 'cpu'
if cpu:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
@ -72,65 +66,80 @@ def select_device(device='', batch_size=None):
cuda = not cpu and torch.cuda.is_available()
if cuda:
devices = device.split(',') if device else range(torch.cuda.device_count()) # i.e. 0,1,6,7
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
n = len(devices) # device count
if n > 1 and batch_size: # check batch_size is divisible by device_count
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
space = ' ' * len(s)
space = ' ' * (len(s) + 1)
for i, d in enumerate(devices):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2:.0f}MiB)\n" # bytes to MB
else:
s += 'CPU\n'
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
if not newline:
s = s.rstrip()
LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
return torch.device('cuda:0' if cuda else 'cpu')
def time_synchronized():
def time_sync():
# pytorch-accurate time
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def profile(x, ops, n=100, device=None):
# profile a pytorch module or list of modules. Example usage:
# x = torch.randn(16, 3, 640, 640) # input
def profile(input, ops, n=10, device=None):
# speed/memory/FLOPs profiler
#
# Usage:
# input = torch.randn(16, 3, 640, 640)
# m1 = lambda x: x * torch.sigmoid(x)
# m2 = nn.SiLU()
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations
# profile(input, [m1, m2], n=100) # profile over 100 iterations
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
results = []
device = device or select_device()
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}")
for x in input if isinstance(input, list) else [input]:
x = x.to(device)
x.requires_grad = True
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, 'to') else m # device
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
except:
flops = 0
for _ in range(n):
t[0] = time_synchronized()
y = m(x)
t[1] = time_synchronized()
try:
_ = y.sum().backward()
t[2] = time_synchronized()
except: # no backward method
for _ in range(n):
t[0] = time_sync()
y = m(x)
t[1] = time_sync()
try:
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception as e: # no backward method
# print(e) # for debug
t[2] = float('nan')
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
print(e)
results.append(None)
torch.cuda.empty_cache()
return results
def is_parallel(model):
@ -143,11 +152,6 @@ def de_parallel(model):
return model.module if is_parallel(model) else model
def intersect_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
def initialize_weights(model):
for m in model.modules():
t = type(m)
@ -156,7 +160,7 @@ def initialize_weights(model):
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True
@ -167,7 +171,7 @@ def find_modules(model, mclass=nn.Conv2d):
def sparsity(model):
# Return global model sparsity
a, b = 0., 0.
a, b = 0, 0
for p in model.parameters():
a += p.numel()
b += (p == 0).sum()
@ -213,42 +217,23 @@ def model_info(model, verbose=False, img_size=640):
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if verbose:
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
try: # FLOPS
try: # FLOPs
from thop import profile
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs
except (ImportError, Exception):
fs = ''
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
def load_classifier(name='resnet101', n=2):
# Loads a pretrained model reshaped to n-class output
model = torchvision.models.__dict__[name](pretrained=True)
# ResNet model properties
# input_size = [3, 224, 224]
# input_space = 'RGB'
# input_range = [0, 1]
# mean = [0.485, 0.456, 0.406]
# std = [0.229, 0.224, 0.225]
# Reshape output to n classes
filters = model.fc.weight.shape[1]
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
model.fc.out_features = n
return model
LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
@ -260,7 +245,7 @@ def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
@ -273,6 +258,29 @@ def copy_attr(a, b, include=(), exclude=()):
setattr(a, k, v)
class EarlyStopping:
# simple early stopper
def __init__(self, patience=30):
self.best_fitness = 0.0 # i.e. mAP
self.best_epoch = 0
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
self.possible_stop = False # possible stop may occur next epoch
def __call__(self, epoch, fitness):
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
self.best_epoch = epoch
self.best_fitness = fitness
delta = epoch - self.best_epoch # epochs without improvement
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
stop = delta >= self.patience # stop training if patience exceeded
if stop:
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
return stop
class ModelEMA:
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
Keep a moving average of everything in the model state_dict (parameters and buffers).
@ -303,7 +311,7 @@ class ModelEMA:
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point:
v *= d
v += (1. - d) * msd[k].detach()
v += (1 - d) * msd[k].detach()
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
# Update EMA attributes

View File

@ -1,318 +0,0 @@
"""Utilities and tools for tracking runs with Weights & Biases."""
import json
import sys
from pathlib import Path
import torch
import yaml
from tqdm import tqdm
sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
from utils.datasets import LoadImagesAndLabels
from utils.datasets import img2label_paths
from utils.general import colorstr, xywh2xyxy, check_dataset, check_file
try:
import wandb
from wandb import init, finish
except ImportError:
wandb = None
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
return from_string[len(prefix):]
def check_wandb_config_file(data_config_file):
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
if Path(wandb_config).is_file():
return wandb_config
return data_config_file
def get_run_info(run_path):
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
run_id = run_path.stem
project = run_path.parent.stem
entity = run_path.parent.parent.stem
model_artifact_name = 'run_' + run_id + '_model'
return entity, project, run_id, model_artifact_name
def check_wandb_resume(opt):
process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
if isinstance(opt.resume, str):
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
if opt.global_rank not in [-1, 0]: # For resuming DDP runs
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
api = wandb.Api()
artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
modeldir = artifact.download()
opt.weights = str(Path(modeldir) / "last.pt")
return True
return None
def process_wandb_config_ddp_mode(opt):
with open(check_file(opt.data)) as f:
data_dict = yaml.safe_load(f) # data dict
train_dir, val_dir = None, None
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
api = wandb.Api()
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
train_dir = train_artifact.download()
train_path = Path(train_dir) / 'data/images/'
data_dict['train'] = str(train_path)
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
api = wandb.Api()
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
val_dir = val_artifact.download()
val_path = Path(val_dir) / 'data/images/'
data_dict['val'] = str(val_path)
if train_dir or val_dir:
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
with open(ddp_data_path, 'w') as f:
yaml.safe_dump(data_dict, f)
opt.data = ddp_data_path
class WandbLogger():
"""Log training runs, datasets, models, and predictions to Weights & Biases.
This logger sends information to W&B at wandb.ai. By default, this information
includes hyperparameters, system configuration and metrics, model metrics,
and basic data metrics and analyses.
By providing additional command line arguments to train.py, datasets,
models and predictions can also be logged.
For more on how this logger is used, see the Weights & Biases documentation:
https://docs.wandb.com/guides/integrations/yolov5
"""
def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
# Pre-training routine --
self.job_type = job_type
self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
# It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
if isinstance(opt.resume, str): # checks resume from artifact
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
assert wandb, 'install wandb to resume wandb runs'
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
self.wandb_run = wandb.init(id=run_id, project=project, entity=entity, resume='allow')
opt.resume = model_artifact_name
elif self.wandb:
self.wandb_run = wandb.init(config=opt,
resume="allow",
project='YOLOv3' if opt.project == 'runs/train' else Path(opt.project).stem,
entity=opt.entity,
name=name,
job_type=job_type,
id=run_id) if not wandb.run else wandb.run
if self.wandb_run:
if self.job_type == 'Training':
if not opt.resume:
wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
# Info useful for resuming from artifacts
self.wandb_run.config.opt = vars(opt)
self.wandb_run.config.data_dict = wandb_data_dict
self.data_dict = self.setup_training(opt, data_dict)
if self.job_type == 'Dataset Creation':
self.data_dict = self.check_and_upload_dataset(opt)
else:
prefix = colorstr('wandb: ')
print(f"{prefix}Install Weights & Biases for YOLOv3 logging with 'pip install wandb' (recommended)")
def check_and_upload_dataset(self, opt):
assert wandb, 'Install wandb to upload dataset'
check_dataset(self.data_dict)
config_path = self.log_dataset_artifact(check_file(opt.data),
opt.single_cls,
'YOLOv3' if opt.project == 'runs/train' else Path(opt.project).stem)
print("Created dataset config file ", config_path)
with open(config_path) as f:
wandb_data_dict = yaml.safe_load(f)
return wandb_data_dict
def setup_training(self, opt, data_dict):
self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
self.bbox_interval = opt.bbox_interval
if isinstance(opt.resume, str):
modeldir, _ = self.download_model_artifact(opt)
if modeldir:
self.weights = Path(modeldir) / "last.pt"
config = self.wandb_run.config
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
config.opt['hyp']
data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
opt.artifact_alias)
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
opt.artifact_alias)
self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
if self.train_artifact_path is not None:
train_path = Path(self.train_artifact_path) / 'data/images/'
data_dict['train'] = str(train_path)
if self.val_artifact_path is not None:
val_path = Path(self.val_artifact_path) / 'data/images/'
data_dict['val'] = str(val_path)
self.val_table = self.val_artifact.get("val")
self.map_val_table_path()
if self.val_artifact is not None:
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
if opt.bbox_interval == -1:
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
return data_dict
def download_dataset_artifact(self, path, alias):
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
dataset_artifact = wandb.use_artifact(artifact_path.as_posix())
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
datadir = dataset_artifact.download()
return datadir, dataset_artifact
return None, None
def download_model_artifact(self, opt):
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
modeldir = model_artifact.download()
epochs_trained = model_artifact.metadata.get('epochs_trained')
total_epochs = model_artifact.metadata.get('total_epochs')
is_finished = total_epochs is None
assert not is_finished, 'training is finished, can only resume incomplete runs.'
return modeldir, model_artifact
return None, None
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
'original_url': str(path),
'epochs_trained': epoch + 1,
'save period': opt.save_period,
'project': opt.project,
'total_epochs': opt.epochs,
'fitness_score': fitness_score
})
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
wandb.log_artifact(model_artifact,
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
print("Saving model artifact on epoch ", epoch + 1)
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
with open(data_file) as f:
data = yaml.safe_load(f) # data dict
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
names = {k: v for k, v in enumerate(names)} # to index dictionary
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
data['train'], rect=True, batch_size=1), names, name='train') if data.get('train') else None
self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
if data.get('train'):
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
if data.get('val'):
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
data.pop('download', None)
with open(path, 'w') as f:
yaml.safe_dump(data, f)
if self.job_type == 'Training': # builds correct artifact pipeline graph
self.wandb_run.use_artifact(self.val_artifact)
self.wandb_run.use_artifact(self.train_artifact)
self.val_artifact.wait()
self.val_table = self.val_artifact.get('val')
self.map_val_table_path()
else:
self.wandb_run.log_artifact(self.train_artifact)
self.wandb_run.log_artifact(self.val_artifact)
return path
def map_val_table_path(self):
self.val_table_map = {}
print("Mapping dataset")
for i, data in enumerate(tqdm(self.val_table.data)):
self.val_table_map[data[3]] = data[0]
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
artifact = wandb.Artifact(name=name, type="dataset")
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
img_files = tqdm(dataset.img_files) if not img_files else img_files
for img_file in img_files:
if Path(img_file).is_dir():
artifact.add_dir(img_file, name='data/images')
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
artifact.add_dir(labels_path, name='data/labels')
else:
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
label_file = Path(img2label_paths([img_file])[0])
artifact.add_file(str(label_file),
name='data/labels/' + label_file.name) if label_file.exists() else None
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
box_data, img_classes = [], {}
for cls, *xywh in labels[:, 1:].tolist():
cls = int(cls)
box_data.append({"position": {"middle": [xywh[0], xywh[1]], "width": xywh[2], "height": xywh[3]},
"class_id": cls,
"box_caption": "%s" % (class_to_id[cls])})
img_classes[cls] = class_to_id[cls]
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
Path(paths).name)
artifact.add(table, name)
return artifact
def log_training_progress(self, predn, path, names):
if self.val_table and self.result_table:
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
box_data = []
total_conf = 0
for *xyxy, conf, cls in predn.tolist():
if conf >= 0.25:
box_data.append(
{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": "%s %.3f" % (names[cls], conf),
"scores": {"class_score": conf},
"domain": "pixel"})
total_conf = total_conf + conf
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
id = self.val_table_map[Path(path).name]
self.result_table.add_data(self.current_epoch,
id,
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
total_conf / max(1, len(box_data))
)
def log(self, log_dict):
if self.wandb_run:
for key, value in log_dict.items():
self.log_dict[key] = value
def end_epoch(self, best_result=False):
if self.wandb_run:
wandb.log(self.log_dict)
self.log_dict = {}
if self.result_artifact:
train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
self.result_artifact.add(train_results, 'result')
wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch),
('best' if best_result else '')])
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
def finish_run(self):
if self.wandb_run:
if self.log_dict:
wandb.log(self.log_dict)
wandb.run.finish()

367
val.py Normal file
View File

@ -0,0 +1,367 @@
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained model accuracy on a custom dataset
Usage:
$ python path/to/val.py --data coco128.yaml --weights yolov3.pt --img 640
"""
import argparse
import json
import os
import sys
from pathlib import Path
from threading import Thread
import numpy as np
import torch
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.general import (LOGGER, NCOLS, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
scale_coords, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, ap_per_class
from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, time_sync
def save_one_txt(predn, save_conf, shape, file):
# Save one txt result
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
def save_one_json(predn, jdict, path, class_map):
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
def process_batch(detections, labels, iouv):
"""
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (Array[N, 10]), for 10 IoU levels
"""
correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
matches = torch.Tensor(matches).to(iouv.device)
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
return correct
@torch.no_grad()
def run(data,
weights=None, # model.pt path(s)
batch_size=32, # batch size
imgsz=640, # inference size (pixels)
conf_thres=0.001, # confidence threshold
iou_thres=0.6, # NMS IoU threshold
task='val', # train, val, test, speed or study
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
single_cls=False, # treat as single-class dataset
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_json=False, # save a COCO-JSON results file
project=ROOT / 'runs/val', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=True, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
save_dir=Path(''),
plots=True,
callbacks=Callbacks(),
compute_loss=None,
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt = next(model.parameters()).device, True # get model device, PyTorch model
half &= device.type != 'cpu' # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn)
stride, pt = model.stride, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt:
model.model.half() if half else model.model.float()
else:
half = False
batch_size = 1 # export.py models default to batch-size 1
device = torch.device('cpu')
LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends')
# Data
data = check_dataset(data) # check
# Configure
model.eval()
is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
# Dataloader
if not training:
if pt and device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
pad = 0.0 if task == 'speed' else 0.5
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt,
prefix=colorstr(f'{task}: '))[0]
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
pbar = tqdm(dataloader, desc=s, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
t1 = time_sync()
if pt:
im = im.to(device, non_blocking=True)
targets = targets.to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
nb, _, height, width = im.shape # batch size, channels, height, width
t2 = time_sync()
dt[0] += t2 - t1
# Inference
out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
dt[1] += time_sync() - t2
# Loss
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
# NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t3 = time_sync()
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
dt[2] += time_sync() - t3
# Metrics
for si, pred in enumerate(out):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
path, shape = Path(paths[si]), shapes[si][0]
seen += 1
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
# Predictions
if single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
# Evaluate
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct = process_batch(predn, labelsn, iouv)
if plots:
confusion_matrix.process_batch(predn, labelsn)
else:
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
# Save/log
if save_txt:
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
if save_json:
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
# Plot images
if plots and batch_i < 3:
f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
# Compute metrics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
if not training:
shape = (batch_size, 3, imgsz, imgsz)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
callbacks.run('on_val_end')
# Save JSON
if save_json and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements(['pycocotools'])
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
LOGGER.info(f'pycocotools unable to run: {e}')
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov3.pt', help='model.pt path(s)')
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
opt.save_json |= opt.data.endswith('coco.yaml')
opt.save_txt |= opt.save_hybrid
print_args(FILE.stem, opt)
return opt
def main(opt):
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
if opt.task in ('train', 'val', 'test'): # run normally
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
run(**vars(opt))
else:
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
opt.half = True # FP16 for fastest results
if opt.task == 'speed': # speed benchmarks
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov3.pt yolov3-spp.pt...
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
for opt.weights in weights:
run(**vars(opt), plots=False)
elif opt.task == 'study': # speed vs mAP benchmarks
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov3.pt yolov3-spp.pt...
for opt.weights in weights:
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
for opt.imgsz in x: # img-size
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
r, _, t = run(**vars(opt), plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_val_study(x=x) # plot
if __name__ == "__main__":
opt = parse_opt()
main(opt)

View File

@ -1,12 +0,0 @@
#!/bin/bash
# Download latest models from https://github.com/ultralytics/yolov3/releases
# Usage:
# $ bash weights/download_weights.sh
python - <<EOF
from utils.google_utils import attempt_download
for x in ['yolov3', 'yolov3-spp', 'yolov3-tiny']:
attempt_download(f'{x}.pt')
EOF