diff --git a/tutorial.ipynb b/tutorial.ipynb index 4e7049d8..3bc0523c 100644 --- a/tutorial.ipynb +++ b/tutorial.ipynb @@ -402,7 +402,7 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "b15def02-a331-4580-9878-8d06900e296d" + "outputId": "7efd38e6-c41f-4fe3-9864-ce4fa43fbb5b" }, "source": [ "!git clone https://github.com/ultralytics/yolov3 # clone\n", @@ -413,13 +413,13 @@ "from yolov3 import utils\n", "display = utils.notebook_init() # checks" ], - "execution_count": 11, + "execution_count": 24, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ - "YOLOv3 🚀 v9.6.0-0-g7eb23e3 torch 1.10.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)\n" + "YOLOv3 🚀 v9.6.0-1-g93a2bcc torch 1.10.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)\n" ] }, { @@ -459,26 +459,26 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "5754dd6d-b5b0-41aa-ce81-7cc7a4c30553" + "outputId": "486202a4-bae2-454f-da62-2c74676a3058" }, "source": [ "!python detect.py --weights yolov3.pt --img 640 --conf 0.25 --source data/images\n", "display.Image(filename='runs/detect/exp/zidane.jpg', width=600)" ], - "execution_count": 15, + "execution_count": 22, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov3.pt'], source=data/images, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n", - "YOLOv3 🚀 v9.6.0-0-g7eb23e3 torch 1.10.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)\n", + "YOLOv3 🚀 v9.6.0-1-g93a2bcc torch 1.10.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)\n", "\n", "Fusing layers... \n", - "Model Summary: 261 layers, 61922845 parameters, 0 gradients\n", - "image 1/2 /content/yolov3/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 tie, Done. (0.020s)\n", + "Model Summary: 261 layers, 61922845 parameters, 0 gradients, 156.1 GFLOPs\n", + "image 1/2 /content/yolov3/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 tie, 1 sports ball, Done. (0.020s)\n", "image 2/2 /content/yolov3/data/images/zidane.jpg: 384x640 2 persons, 3 ties, Done. (0.020s)\n", - "Speed: 0.6ms pre-process, 20.0ms inference, 1.2ms NMS per image at shape (1, 3, 640, 640)\n", + "Speed: 0.5ms pre-process, 20.0ms inference, 1.3ms NMS per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n" ] } @@ -567,27 +567,27 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "fe3159ef-a2e4-49e3-ec0b-2ef434e9a28e" + "outputId": "15c92efb-05ec-48e0-b9ef-ff34871354c8" }, "source": [ "# Run YOLOv3 on COCO val\n", "!python val.py --weights yolov3.pt --data coco.yaml --img 640 --iou 0.65 --half" ], - "execution_count": 13, + "execution_count": 23, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov3/data/coco.yaml, weights=['yolov3.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n", - "YOLOv3 🚀 v9.6.0-0-g7eb23e3 torch 1.10.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)\n", + "YOLOv3 🚀 v9.6.0-1-g93a2bcc torch 1.10.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)\n", "\n", "Fusing layers... \n", - "Model Summary: 261 layers, 61922845 parameters, 0 gradients\n", + "Model Summary: 261 layers, 61922845 parameters, 0 gradients, 156.1 GFLOPs\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:00