diff --git a/README.md b/README.md index 3ed0a87b..3bba1c82 100755 --- a/README.md +++ b/README.md @@ -45,13 +45,21 @@ HS**V** Intensity | +/- 50% # Inference -Run `detect.py` to apply trained weights to an image, such as `zidane.jpg` from the `data/samples` folder, shown here. Download official YOLOv3 weights: - -- PyTorch format: https://storage.googleapis.com/ultralytics/yolov3.pt -- Darknet format: https://pjreddie.com/media/files/yolov3.weights - +Run `detect.py` to apply trained weights to an image and visualize results, such as `zidane.jpg` from the `data/samples` folder, shown here. ![Alt](https://github.com/ultralytics/yolov3/blob/master/data/zidane_result.jpg "inference example") +# Pretrained Weights +Download official YOLOv3 weights: + +**Darknet** format: +- https://pjreddie.com/media/files/yolov3.weights +- https://pjreddie.com/media/files/yolov3-tiny.weights + +**PyTorch** format: +- https://storage.googleapis.com/ultralytics/yolov3.pt +- https://storage.googleapis.com/ultralytics/yolov3-tiny.pt + + # Validation mAP Run `test.py` to validate the official YOLOv3 weights `weights/yolov3.weights` against the 5000 validation images. You should obtain a .584 mAP at `--img-size 416`, or .586 at `--img-size 608` using this repo, compared to .579 at 608 x 608 reported in darknet (https://arxiv.org/abs/1804.02767). diff --git a/weights/download_yolov3_weights.sh b/weights/download_yolov3_weights.sh index d758cd11..968dc1dd 100644 --- a/weights/download_yolov3_weights.sh +++ b/weights/download_yolov3_weights.sh @@ -1,6 +1,8 @@ #!/bin/bash -wget https://pjreddie.com/media/files/darknet53.conv.74 wget https://pjreddie.com/media/files/yolov3.weights wget https://pjreddie.com/media/files/yolov3-tiny.weights + +wget https://pjreddie.com/media/files/darknet53.conv.74 + wget https://storage.googleapis.com/ultralytics/yolov3.pt