script that detects on rostopics
This commit is contained in:
parent
0b0b834744
commit
a312c2ae7d
193
yolov3/detect_on_bag.py
Normal file
193
yolov3/detect_on_bag.py
Normal file
@ -0,0 +1,193 @@
|
|||||||
|
|
||||||
|
# Subscribe to input image topic.
|
||||||
|
# object_detector ([std_msgs::Int8])
|
||||||
|
|
||||||
|
# Publishes the number of detected objects.
|
||||||
|
|
||||||
|
# bounding_boxes ([darknet_ros_msgs::BoundingBoxes])
|
||||||
|
|
||||||
|
# Publishes an array of bounding boxes that gives information of the position and size of the bounding box in pixel coordinates.
|
||||||
|
|
||||||
|
# detection_image ([sensor_msgs::Image])
|
||||||
|
|
||||||
|
# Publishes an image of the detection image including the bounding boxes.
|
||||||
|
|
||||||
|
import rclpy
|
||||||
|
from rclpy.node import Node
|
||||||
|
|
||||||
|
from std_msgs.msg import String
|
||||||
|
from sensor_msgs.msg import Image
|
||||||
|
from cv_bridge import CvBridge
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[0] # root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
|
from models.common import DetectMultiBackend
|
||||||
|
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
|
||||||
|
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
|
||||||
|
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
|
||||||
|
from utils.plots import Annotator, colors, save_one_box
|
||||||
|
from utils.torch_utils import select_device, time_sync
|
||||||
|
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
|
||||||
|
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
|
||||||
|
imgsz=1280, # inference size (pixels)
|
||||||
|
conf_thres=0.25, # confidence threshold
|
||||||
|
iou_thres=0.45, # NMS IOU threshold
|
||||||
|
max_det=1000, # maximum detections per image
|
||||||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
|
view_img=False, # show results
|
||||||
|
save_txt=False, # save results to *.txt
|
||||||
|
save_conf=False, # save confidences in --save-txt labels
|
||||||
|
save_crop=False, # save cropped prediction boxes
|
||||||
|
nosave=False, # do not save images/videos
|
||||||
|
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||||||
|
agnostic_nms=False, # class-agnostic NMS
|
||||||
|
augment=False, # augmented inference
|
||||||
|
visualize=False, # visualize features
|
||||||
|
update=False, # update all models
|
||||||
|
project=ROOT / 'runs/detect', # save results to project/name
|
||||||
|
name='exp', # save results to project/name
|
||||||
|
exist_ok=False, # existing project/name ok, do not increment
|
||||||
|
line_thickness=3, # bounding box thickness (pixels)
|
||||||
|
hide_labels=False, # hide labels
|
||||||
|
hide_conf=False, # hide confidences
|
||||||
|
half=False, # use FP16 half-precision inference
|
||||||
|
dnn=False, # use OpenCV DNN for ONNX inference
|
||||||
|
):
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||||
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
device = select_device(device)
|
||||||
|
model = DetectMultiBackend(weights, device=device, dnn=dnn)
|
||||||
|
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
|
||||||
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
|
||||||
|
# Half
|
||||||
|
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
|
||||||
|
if pt:
|
||||||
|
model.model.half() if half else model.model.float()
|
||||||
|
|
||||||
|
# Padded resize
|
||||||
|
dataset_img = letterbox(source, imgsz, stride=stride, auto=pt)[0]
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
dataset_img = dataset_img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||||||
|
dataset_img = np.ascontiguousarray(dataset_img)
|
||||||
|
# Run inference
|
||||||
|
if pt and device.type != 'cpu':
|
||||||
|
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
|
||||||
|
dt, seen = [0.0, 0.0, 0.0], 0
|
||||||
|
bs = 1
|
||||||
|
t1 = time_sync()
|
||||||
|
im = dataset_img
|
||||||
|
im = torch.from_numpy(im).to(device)
|
||||||
|
im = im.half() if half else im.float() # uint8 to fp16/32
|
||||||
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||||
|
if len(im.shape) == 3:
|
||||||
|
im = im[None] # expand for batch dim
|
||||||
|
t2 = time_sync()
|
||||||
|
dt[0] += t2 - t1
|
||||||
|
pred = model(im, augment=augment, visualize=visualize)
|
||||||
|
t3 = time_sync()
|
||||||
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
||||||
|
dt[2] += time_sync() - t3
|
||||||
|
|
||||||
|
## iterate through detections
|
||||||
|
for i, det in enumerate(pred):
|
||||||
|
seen += 1
|
||||||
|
path = '/home/parallels'
|
||||||
|
p, im0, frame = path, source.copy(), 'frame'
|
||||||
|
p = Path(p) # to Path
|
||||||
|
save_path = '/home/parallels/predict.jpeg'
|
||||||
|
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
||||||
|
# import pdb; pdb.set_trace()
|
||||||
|
if len(det):
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
for c in det[:, -1].unique():
|
||||||
|
n = (det[:, -1] == c).sum() # detections per class
|
||||||
|
s = f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||||
|
|
||||||
|
# Write results
|
||||||
|
for *xyxy, conf, cls in reversed(det):
|
||||||
|
c = int(cls) # integer class
|
||||||
|
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
||||||
|
annotator.box_label(xyxy, label, color=colors(c, True))
|
||||||
|
# Print time (inference-only)
|
||||||
|
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
|
||||||
|
# Stream results
|
||||||
|
im0 = annotator.result()
|
||||||
|
# cv2.imwrite(save_path, im0)
|
||||||
|
return im0
|
||||||
|
|
||||||
|
class DetectOnBag(Node):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__('detect_on_bag')
|
||||||
|
self.subscription = self.create_subscription(
|
||||||
|
Image,
|
||||||
|
'/camera/color/image_raw',
|
||||||
|
self.image_callback,
|
||||||
|
10)
|
||||||
|
self.subscription # prevent unused variable warning
|
||||||
|
self.detected_img_pub = self.create_publisher(Image, '/detection_image', 10)
|
||||||
|
|
||||||
|
def image_callback(self, msg):
|
||||||
|
self.get_logger().info('Image')
|
||||||
|
print(msg.header.stamp)
|
||||||
|
|
||||||
|
bridge = CvBridge()
|
||||||
|
cv_image = bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')
|
||||||
|
detected_img = run('runs/train/exp14/weights/best.pt', cv_image)
|
||||||
|
self.detected_img_pub.publish(self.numpy_array_to_image_msg(detected_img))
|
||||||
|
|
||||||
|
def numpy_array_to_image_msg(self, numpy_array):
|
||||||
|
# Create a CvBridge object
|
||||||
|
bridge = CvBridge()
|
||||||
|
|
||||||
|
# Convert the numpy array to a cv image
|
||||||
|
cv_image = cv2.cvtColor(numpy_array, cv2.COLOR_RGB2BGR)
|
||||||
|
|
||||||
|
# Convert the cv image to a ROS message
|
||||||
|
ros_image = bridge.cv2_to_imgmsg(cv_image, encoding="bgr8")
|
||||||
|
|
||||||
|
return ros_image
|
||||||
|
|
||||||
|
|
||||||
|
def main(args=None):
|
||||||
|
rclpy.init(args=args)
|
||||||
|
|
||||||
|
detect_on_bag = DetectOnBag()
|
||||||
|
|
||||||
|
rclpy.spin(detect_on_bag)
|
||||||
|
|
||||||
|
# Destroy the node explicitly
|
||||||
|
# (optional - otherwise it will be done automatically
|
||||||
|
# when the garbage collector destroys the node object)
|
||||||
|
detect_on_bag.destroy_node()
|
||||||
|
rclpy.shutdown()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
Loading…
x
Reference in New Issue
Block a user