cleanup moved console_app to tools/similarity
git-svn-id: http://find-object.googlecode.com/svn/trunk/find_object@363 620bd6b2-0a58-f614-fd9a-1bd335dccda9
This commit is contained in:
parent
6a0136cc16
commit
b28ca440e8
@ -1,28 +0,0 @@
|
||||
|
||||
|
||||
SET(SRC_FILES
|
||||
main.cpp
|
||||
)
|
||||
|
||||
SET(INCLUDE_DIRS
|
||||
${OpenCV_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
SET(LIBRARIES
|
||||
${OpenCV_LIBS}
|
||||
)
|
||||
|
||||
# Make sure the compiler can find include files from our library.
|
||||
INCLUDE_DIRECTORIES(${INCLUDE_DIRS})
|
||||
|
||||
# Add binary called "console" that is built from the source file "main.cpp".
|
||||
# The extension is automatically found.
|
||||
ADD_EXECUTABLE(console ${SRC_FILES})
|
||||
TARGET_LINK_LIBRARIES(console ${LIBRARIES})
|
||||
|
||||
SET_TARGET_PROPERTIES( console
|
||||
PROPERTIES OUTPUT_NAME ${PROJECT_PREFIX}-console)
|
||||
|
||||
INSTALL(TARGETS console
|
||||
RUNTIME DESTINATION bin COMPONENT runtime
|
||||
BUNDLE DESTINATION "${CMAKE_BUNDLE_LOCATION}" COMPONENT runtime)
|
||||
@ -1,164 +0,0 @@
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// OpenCV stuff
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <opencv2/features2d/features2d.hpp>
|
||||
#include <opencv2/nonfree/features2d.hpp>
|
||||
#include <opencv2/calib3d/calib3d.hpp> // for homography
|
||||
|
||||
void showUsage()
|
||||
{
|
||||
printf(
|
||||
"\n"
|
||||
"Return similarity between two images (the number of similar features between the images).\n"
|
||||
"Usage :\n"
|
||||
" ./find_object-console [option] object.png scene.png\n"
|
||||
"Options: \n"
|
||||
" -inliers return inliers percentage : inliers / (inliers + outliers)\n"
|
||||
" -quiet don't show messages\n");
|
||||
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
enum {mTotal, mInliers};
|
||||
|
||||
int main(int argc, char * argv[])
|
||||
{
|
||||
bool quiet = false;
|
||||
int method = mTotal; //total matches
|
||||
if(argc<3)
|
||||
{
|
||||
printf("Two images required!\n");
|
||||
showUsage();
|
||||
}
|
||||
else if(argc>3)
|
||||
{
|
||||
for(int i=1; i<argc-2; ++i)
|
||||
{
|
||||
if(std::string(argv[i]).compare("-inliers") == 0)
|
||||
{
|
||||
method = mInliers;
|
||||
}
|
||||
else if(std::string(argv[i]).compare("-quiet") == 0)
|
||||
{
|
||||
quiet = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("Option %s not recognized!", argv[1]);
|
||||
showUsage();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Load as grayscale
|
||||
cv::Mat objectImg = cv::imread(argv[argc-2], cv::IMREAD_GRAYSCALE);
|
||||
cv::Mat sceneImg = cv::imread(argv[argc-1], cv::IMREAD_GRAYSCALE);
|
||||
|
||||
int value = 0;
|
||||
if(!objectImg.empty() && !sceneImg.empty())
|
||||
{
|
||||
std::vector<cv::KeyPoint> objectKeypoints;
|
||||
std::vector<cv::KeyPoint> sceneKeypoints;
|
||||
cv::Mat objectDescriptors;
|
||||
cv::Mat sceneDescriptors;
|
||||
|
||||
////////////////////////////
|
||||
// EXTRACT KEYPOINTS
|
||||
////////////////////////////
|
||||
cv::SIFT sift;
|
||||
sift.detect(objectImg, objectKeypoints);
|
||||
sift.detect(sceneImg, sceneKeypoints);
|
||||
|
||||
////////////////////////////
|
||||
// EXTRACT DESCRIPTORS
|
||||
////////////////////////////
|
||||
sift.compute(objectImg, objectKeypoints, objectDescriptors);
|
||||
sift.compute(sceneImg, sceneKeypoints, sceneDescriptors);
|
||||
|
||||
////////////////////////////
|
||||
// NEAREST NEIGHBOR MATCHING USING FLANN LIBRARY (included in OpenCV)
|
||||
////////////////////////////
|
||||
cv::Mat results;
|
||||
cv::Mat dists;
|
||||
std::vector<std::vector<cv::DMatch> > matches;
|
||||
int k=2; // find the 2 nearest neighbors
|
||||
|
||||
// Create Flann KDTree index
|
||||
cv::flann::Index flannIndex(sceneDescriptors, cv::flann::KDTreeIndexParams(), cvflann::FLANN_DIST_EUCLIDEAN);
|
||||
results = cv::Mat(objectDescriptors.rows, k, CV_32SC1); // Results index
|
||||
dists = cv::Mat(objectDescriptors.rows, k, CV_32FC1); // Distance results are CV_32FC1
|
||||
|
||||
// search (nearest neighbor)
|
||||
flannIndex.knnSearch(objectDescriptors, results, dists, k, cv::flann::SearchParams() );
|
||||
|
||||
////////////////////////////
|
||||
// PROCESS NEAREST NEIGHBOR RESULTS
|
||||
////////////////////////////
|
||||
|
||||
// Find correspondences by NNDR (Nearest Neighbor Distance Ratio)
|
||||
float nndrRatio = 0.6f;
|
||||
std::vector<cv::Point2f> mpts_1, mpts_2; // Used for homography
|
||||
std::vector<int> indexes_1, indexes_2; // Used for homography
|
||||
std::vector<uchar> outlier_mask; // Used for homography
|
||||
// Check if this descriptor matches with those of the objects
|
||||
|
||||
for(int i=0; i<objectDescriptors.rows; ++i)
|
||||
{
|
||||
// Apply NNDR
|
||||
if(dists.at<float>(i,0) <= nndrRatio * dists.at<float>(i,1))
|
||||
{
|
||||
mpts_1.push_back(objectKeypoints.at(i).pt);
|
||||
indexes_1.push_back(i);
|
||||
|
||||
mpts_2.push_back(sceneKeypoints.at(results.at<int>(i,0)).pt);
|
||||
indexes_2.push_back(results.at<int>(i,0));
|
||||
}
|
||||
}
|
||||
|
||||
if(method == mInliers)
|
||||
{
|
||||
// FIND HOMOGRAPHY
|
||||
unsigned int minInliers = 8;
|
||||
if(mpts_1.size() >= minInliers)
|
||||
{
|
||||
cv::Mat H = findHomography(mpts_1,
|
||||
mpts_2,
|
||||
cv::RANSAC,
|
||||
1.0,
|
||||
outlier_mask);
|
||||
int inliers=0, outliers=0;
|
||||
for(unsigned int k=0; k<mpts_1.size();++k)
|
||||
{
|
||||
if(outlier_mask.at(k))
|
||||
{
|
||||
++inliers;
|
||||
}
|
||||
else
|
||||
{
|
||||
++outliers;
|
||||
}
|
||||
}
|
||||
if(!quiet)
|
||||
printf("Total=%d Inliers=%d Outliers=%d\n", (int)mpts_1.size(), inliers, outliers);
|
||||
value = (inliers*100) / (inliers+outliers);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
value = mpts_1.size();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("Images are not valid!\n");
|
||||
showUsage();
|
||||
}
|
||||
if(!quiet)
|
||||
printf("Similarity = %d\n", value);
|
||||
return value;
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user