Fix syntax of nodelet manifest file

By splitting files for each library.

Close #131
This commit is contained in:
Kentaro Wada 2017-04-11 00:10:10 +09:00 committed by Paul Bovbel
parent 909b76d773
commit d1368c0f65
7 changed files with 232 additions and 233 deletions

View File

@ -48,7 +48,11 @@
<test_depend>rostest</test_depend>
<export>
<nodelet plugin="${prefix}/pcl_nodelets.xml"/>
<nodelet plugin="${prefix}/plugins/nodelet/libpcl_ros_features.xml"/>
<nodelet plugin="${prefix}/plugins/nodelet/libpcl_ros_filters.xml"/>
<nodelet plugin="${prefix}/plugins/nodelet/libpcl_ros_io.xml"/>
<nodelet plugin="${prefix}/plugins/nodelet/libpcl_ros_segmentation.xml"/>
<nodelet plugin="${prefix}/plugins/nodelet/libpcl_ros_surface.xml"/>
</export>
</package>

View File

@ -1,232 +0,0 @@
<!-- PCL Features library component -->
<library path="lib/libpcl_ros_features">
<class name="pcl/BoundaryEstimation" type="BoundaryEstimation" base_class_type="nodelet::Nodelet">
<description>
BoundaryEstimation estimates whether a set of points is lying on surface boundaries using an angle criterion. The
code makes use of the estimated surface normals at each point in the input data set.
</description>
</class>
<class name="pcl/FPFHEstimation" type="FPFHEstimation" base_class_type="nodelet::Nodelet">
<description>
FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset
containing points and normals.
</description>
</class>
<class name="pcl/FPFHEstimationOMP" type="FPFHEstimationOMP" base_class_type="nodelet::Nodelet">
<description>
FPFHEstimationOMP estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset
containing points and normals, in parallel, using the OpenMP standard.
</description>
</class>
<class name="pcl/SHOTEstimation" type="SHOTEstimation" base_class_type="nodelet::Nodelet">
<description>
SHOTEstimation estimates SHOT descriptor for a given point cloud dataset
containing points and normals.
</description>
</class>
<class name="pcl/SHOTEstimationOMP" type="SHOTEstimationOMP" base_class_type="nodelet::Nodelet">
<description>
SHOTEstimationOMP estimates SHOT descriptor for a given point cloud dataset
containing points and normals, in parallel, using the OpenMP standard.
</description>
</class>
<class name="pcl/MomentInvariantsEstimation" type="MomentInvariantsEstimation" base_class_type="nodelet::Nodelet">
<description>
MomentInvariantsEstimation estimates the 3 moment invariants (j1, j2, j3) at each 3D point.
</description>
</class>
<class name="pcl/NormalEstimationOMP" type="NormalEstimationOMP" base_class_type="nodelet::Nodelet">
<description>
NormalEstimationOMP estimates local surface properties at each 3D point, such as surface normals and curvatures,
in parallel, using the OpenMP standard.
</description>
</class>
<class name="pcl/NormalEstimationTBB" type="NormalEstimationTBB" base_class_type="nodelet::Nodelet">
<description>
NormalEstimationTBB estimates local surface properties at each 3D point, such as surface normals and curvatures, in
parallel, using Intel's Threading Building Blocks library.
</description>
</class>
<class name="pcl/NormalEstimation" type="NormalEstimation" base_class_type="nodelet::Nodelet">
<description>
NormalEstimation estimates local surface properties at each 3D point, such as surface normals and curvatures.
</description>
</class>
<class name="pcl/PFHEstimation" type="PFHEstimation" base_class_type="nodelet::Nodelet">
<description>
PFHEstimation estimates the Point Feature Histogram (PFH) descriptor for a given point cloud dataset containing
points and normals.
</description>
</class>
<class name="pcl/PrincipalCurvaturesEstimation" type="PrincipalCurvaturesEstimation" base_class_type="nodelet::Nodelet">
<description>
PrincipalCurvaturesEstimation estimates the directions (eigenvectors) and magnitudes (eigenvalues) of principal surface
curvatures for a given point cloud dataset containing points and normals.
</description>
</class>
<class name="pcl/VFHEstimation" type="VFHEstimation" base_class_type="nodelet::Nodelet">
<description>
VFHEstimation estimates the Viewpoint Feature Histogram (VFH) global descriptor for a given point cloud cluster dataset
containing points and normals.
</description>
</class>
</library>
<!-- PCL IO library component -->
<library path="lib/libpcl_ros_io">
<class name="pcl/NodeletMUX" type="NodeletMUX" base_class_type="nodelet::Nodelet">
<description>
NodeletMUX represent a mux nodelet for PointCloud topics: it takes N (up
to 8) input topics, and publishes all of them on one output topic.
</description>
</class>
<class name="pcl/NodeletDEMUX" type="NodeletDEMUX" base_class_type="nodelet::Nodelet">
<description>
NodeletDEMUX represent a demux nodelet for PointCloud topics: it
publishes 1 input topic to N output topics.
</description>
</class>
<class name="pcl/PCDReader" type="PCDReader" base_class_type="nodelet::Nodelet">
<description>
PCDReader reads in a PCD (Point Cloud Data) v.5 file from disk and converts it to a PointCloud message.
</description>
</class>
<class name="pcl/BAGReader" type="BAGReader" base_class_type="nodelet::Nodelet">
<description>
BAGReader reads in sensor_msgs/PointCloud2 messages from BAG files.
</description>
</class>
<class name="pcl/PCDWriter" type="PCDWriter" base_class_type="nodelet::Nodelet">
<description>
PCDWriter writes a PointCloud message to disk in a PCD (Point Cloud Data) v.5 file format.
</description>
</class>
<class name="pcl/PointCloudConcatenateFieldsSynchronizer" type="PointCloudConcatenateFieldsSynchronizer" base_class_type="nodelet::Nodelet">
<description>
PointCloudConcatenateFieldsSynchronizer is a special form of data synchronizer: it listens for a set of input PointCloud messages on the
same topic, checks their timestamps, and concatenates their fields together into a single PointCloud output message.
</description>
</class>
<class name="pcl/PointCloudConcatenateDataSynchronizer" type="PointCloudConcatenateDataSynchronizer" base_class_type="nodelet::Nodelet">
<description>
PointCloudConcatenateDataSynchronizer is a special form of data
synchronizer: it listens for a set of input PointCloud messages on
different topics, and concatenates them together into a single PointCloud
output message.
</description>
</class>
</library>
<!-- PCL Filters library component -->
<library path="lib/libpcl_ros_filters">
<class name="pcl/PassThrough" type="PassThrough" base_class_type="nodelet::Nodelet">
<description>
PassThrough is a filter that uses the basic Filter class mechanisms for passing data around.
</description>
</class>
<class name="pcl/VoxelGrid" type="VoxelGrid" base_class_type="nodelet::Nodelet">
<description>
VoxelGrid assembles a local 3D grid over a given PointCloud, and uses that to downsample the data.
</description>
</class>
<class name="pcl/ProjectInliers" type="ProjectInliers" base_class_type="nodelet::Nodelet">
<description>
ProjectInliers uses a model and a set of inlier indices from a PointCloud to project them into a separate PointCloud.
</description>
</class>
<class name="pcl/ExtractIndices" type="ExtractIndices" base_class_type="nodelet::Nodelet">
<description>
ExtractIndices extracts a set of indices from a PointCloud as a separate PointCloud.
</description>
</class>
<class name="pcl/StatisticalOutlierRemoval" type="StatisticalOutlierRemoval" base_class_type="nodelet::Nodelet">
<description>
StatisticalOutlierRemoval uses point neighborhood statistics to filter outlier data.
</description>
</class>
<class name="pcl/RadiusOutlierRemoval" type="RadiusOutlierRemoval" base_class_type="nodelet::Nodelet">
<description>
RadiusOutlierRemoval uses point neighborhood statistics to filter outlier data.
</description>
</class>
<class name="pcl/CropBox" type="CropBox" base_class_type="nodelet::Nodelet">
<description>
CropBox is a filter that allows the user to filter all the data inside of a given box.
</description>
</class>
</library>
<!-- PCL Segmentation library component -->
<library path="lib/libpcl_ros_segmentation">
<class name="pcl/ExtractPolygonalPrismData" type="ExtractPolygonalPrismData" base_class_type="nodelet::Nodelet">
<description>
ExtractPolygonalPrismData uses a set of point indices that represent a planar model, and together with a given
height, generates a 3D polygonal prism. The polygonal prism is then used to segment all points lying inside it.
</description>
</class>
<class name="pcl/EuclideanClusterExtraction" type="EuclideanClusterExtraction" base_class_type="nodelet::Nodelet">
<description>
EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense.
</description>
</class>
<class name="pcl/SACSegmentationFromNormals" type="SACSegmentationFromNormals" base_class_type="nodelet::Nodelet">
<description>
SACSegmentation represents the Nodelet segmentation class for Sample Consensus methods and models, in the sense that
it just creates a Nodelet wrapper for generic-purpose SAC-based segmentation.
</description>
</class>
<class name="pcl/SACSegmentation" type="SACSegmentation" base_class_type="nodelet::Nodelet">
<description>
SACSegmentation represents the Nodelet segmentation class for Sample Consensus methods and models, in the sense that
it just creates a Nodelet wrapper for generic-purpose SAC-based segmentation.
</description>
</class>
<class name="pcl/SegmentDifferences" type="SegmentDifferences" base_class_type="nodelet::Nodelet">
<description>
SegmentDifferences obtains the difference between two spatially aligned point clouds and returns the
difference between them for a maximum given distance threshold.
</description>
</class>
</library>
<!-- PCL Surface reconstruction library component -->
<library path="lib/libpcl_ros_surface">
<class name="pcl/MovingLeastSquares" type="MovingLeastSquares" base_class_type="nodelet::Nodelet">
<description>
MovingLeastSquares is an implementation of the MLS algorithm for data reconstruction through bivariate polynomial fitting.
</description>
</class>
<class name="pcl/ConvexHull2D" type="ConvexHull2D" base_class_type="nodelet::Nodelet">
<description>
ConvexHull2D represents a 2D ConvexHull implementation.
</description>
</class>
</library>

View File

@ -0,0 +1,85 @@
<!-- PCL Features library component -->
<library path="lib/libpcl_ros_features">
<class name="pcl/BoundaryEstimation" type="BoundaryEstimation" base_class_type="nodelet::Nodelet">
<description>
BoundaryEstimation estimates whether a set of points is lying on surface boundaries using an angle criterion. The
code makes use of the estimated surface normals at each point in the input data set.
</description>
</class>
<class name="pcl/FPFHEstimation" type="FPFHEstimation" base_class_type="nodelet::Nodelet">
<description>
FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset
containing points and normals.
</description>
</class>
<class name="pcl/FPFHEstimationOMP" type="FPFHEstimationOMP" base_class_type="nodelet::Nodelet">
<description>
FPFHEstimationOMP estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset
containing points and normals, in parallel, using the OpenMP standard.
</description>
</class>
<class name="pcl/SHOTEstimation" type="SHOTEstimation" base_class_type="nodelet::Nodelet">
<description>
SHOTEstimation estimates SHOT descriptor for a given point cloud dataset
containing points and normals.
</description>
</class>
<class name="pcl/SHOTEstimationOMP" type="SHOTEstimationOMP" base_class_type="nodelet::Nodelet">
<description>
SHOTEstimationOMP estimates SHOT descriptor for a given point cloud dataset
containing points and normals, in parallel, using the OpenMP standard.
</description>
</class>
<class name="pcl/MomentInvariantsEstimation" type="MomentInvariantsEstimation" base_class_type="nodelet::Nodelet">
<description>
MomentInvariantsEstimation estimates the 3 moment invariants (j1, j2, j3) at each 3D point.
</description>
</class>
<class name="pcl/NormalEstimationOMP" type="NormalEstimationOMP" base_class_type="nodelet::Nodelet">
<description>
NormalEstimationOMP estimates local surface properties at each 3D point, such as surface normals and curvatures,
in parallel, using the OpenMP standard.
</description>
</class>
<class name="pcl/NormalEstimationTBB" type="NormalEstimationTBB" base_class_type="nodelet::Nodelet">
<description>
NormalEstimationTBB estimates local surface properties at each 3D point, such as surface normals and curvatures, in
parallel, using Intel's Threading Building Blocks library.
</description>
</class>
<class name="pcl/NormalEstimation" type="NormalEstimation" base_class_type="nodelet::Nodelet">
<description>
NormalEstimation estimates local surface properties at each 3D point, such as surface normals and curvatures.
</description>
</class>
<class name="pcl/PFHEstimation" type="PFHEstimation" base_class_type="nodelet::Nodelet">
<description>
PFHEstimation estimates the Point Feature Histogram (PFH) descriptor for a given point cloud dataset containing
points and normals.
</description>
</class>
<class name="pcl/PrincipalCurvaturesEstimation" type="PrincipalCurvaturesEstimation" base_class_type="nodelet::Nodelet">
<description>
PrincipalCurvaturesEstimation estimates the directions (eigenvectors) and magnitudes (eigenvalues) of principal surface
curvatures for a given point cloud dataset containing points and normals.
</description>
</class>
<class name="pcl/VFHEstimation" type="VFHEstimation" base_class_type="nodelet::Nodelet">
<description>
VFHEstimation estimates the Viewpoint Feature Histogram (VFH) global descriptor for a given point cloud cluster dataset
containing points and normals.
</description>
</class>
</library>

View File

@ -0,0 +1,43 @@
<!-- PCL Filters library component -->
<library path="lib/libpcl_ros_filters">
<class name="pcl/PassThrough" type="PassThrough" base_class_type="nodelet::Nodelet">
<description>
PassThrough is a filter that uses the basic Filter class mechanisms for passing data around.
</description>
</class>
<class name="pcl/VoxelGrid" type="VoxelGrid" base_class_type="nodelet::Nodelet">
<description>
VoxelGrid assembles a local 3D grid over a given PointCloud, and uses that to downsample the data.
</description>
</class>
<class name="pcl/ProjectInliers" type="ProjectInliers" base_class_type="nodelet::Nodelet">
<description>
ProjectInliers uses a model and a set of inlier indices from a PointCloud to project them into a separate PointCloud.
</description>
</class>
<class name="pcl/ExtractIndices" type="ExtractIndices" base_class_type="nodelet::Nodelet">
<description>
ExtractIndices extracts a set of indices from a PointCloud as a separate PointCloud.
</description>
</class>
<class name="pcl/StatisticalOutlierRemoval" type="StatisticalOutlierRemoval" base_class_type="nodelet::Nodelet">
<description>
StatisticalOutlierRemoval uses point neighborhood statistics to filter outlier data.
</description>
</class>
<class name="pcl/RadiusOutlierRemoval" type="RadiusOutlierRemoval" base_class_type="nodelet::Nodelet">
<description>
RadiusOutlierRemoval uses point neighborhood statistics to filter outlier data.
</description>
</class>
<class name="pcl/CropBox" type="CropBox" base_class_type="nodelet::Nodelet">
<description>
CropBox is a filter that allows the user to filter all the data inside of a given box.
</description>
</class>
</library>

View File

@ -0,0 +1,49 @@
<!-- PCL IO library component -->
<library path="lib/libpcl_ros_io">
<class name="pcl/NodeletMUX" type="NodeletMUX" base_class_type="nodelet::Nodelet">
<description>
NodeletMUX represent a mux nodelet for PointCloud topics: it takes N (up
to 8) input topics, and publishes all of them on one output topic.
</description>
</class>
<class name="pcl/NodeletDEMUX" type="NodeletDEMUX" base_class_type="nodelet::Nodelet">
<description>
NodeletDEMUX represent a demux nodelet for PointCloud topics: it
publishes 1 input topic to N output topics.
</description>
</class>
<class name="pcl/PCDReader" type="PCDReader" base_class_type="nodelet::Nodelet">
<description>
PCDReader reads in a PCD (Point Cloud Data) v.5 file from disk and converts it to a PointCloud message.
</description>
</class>
<class name="pcl/BAGReader" type="BAGReader" base_class_type="nodelet::Nodelet">
<description>
BAGReader reads in sensor_msgs/PointCloud2 messages from BAG files.
</description>
</class>
<class name="pcl/PCDWriter" type="PCDWriter" base_class_type="nodelet::Nodelet">
<description>
PCDWriter writes a PointCloud message to disk in a PCD (Point Cloud Data) v.5 file format.
</description>
</class>
<class name="pcl/PointCloudConcatenateFieldsSynchronizer" type="PointCloudConcatenateFieldsSynchronizer" base_class_type="nodelet::Nodelet">
<description>
PointCloudConcatenateFieldsSynchronizer is a special form of data synchronizer: it listens for a set of input PointCloud messages on the
same topic, checks their timestamps, and concatenates their fields together into a single PointCloud output message.
</description>
</class>
<class name="pcl/PointCloudConcatenateDataSynchronizer" type="PointCloudConcatenateDataSynchronizer" base_class_type="nodelet::Nodelet">
<description>
PointCloudConcatenateDataSynchronizer is a special form of data
synchronizer: it listens for a set of input PointCloud messages on
different topics, and concatenates them together into a single PointCloud
output message.
</description>
</class>
</library>

View File

@ -0,0 +1,37 @@
<!-- PCL Segmentation library component -->
<library path="lib/libpcl_ros_segmentation">
<class name="pcl/ExtractPolygonalPrismData" type="ExtractPolygonalPrismData" base_class_type="nodelet::Nodelet">
<description>
ExtractPolygonalPrismData uses a set of point indices that represent a planar model, and together with a given
height, generates a 3D polygonal prism. The polygonal prism is then used to segment all points lying inside it.
</description>
</class>
<class name="pcl/EuclideanClusterExtraction" type="EuclideanClusterExtraction" base_class_type="nodelet::Nodelet">
<description>
EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense.
</description>
</class>
<class name="pcl/SACSegmentationFromNormals" type="SACSegmentationFromNormals" base_class_type="nodelet::Nodelet">
<description>
SACSegmentation represents the Nodelet segmentation class for Sample Consensus methods and models, in the sense that
it just creates a Nodelet wrapper for generic-purpose SAC-based segmentation.
</description>
</class>
<class name="pcl/SACSegmentation" type="SACSegmentation" base_class_type="nodelet::Nodelet">
<description>
SACSegmentation represents the Nodelet segmentation class for Sample Consensus methods and models, in the sense that
it just creates a Nodelet wrapper for generic-purpose SAC-based segmentation.
</description>
</class>
<class name="pcl/SegmentDifferences" type="SegmentDifferences" base_class_type="nodelet::Nodelet">
<description>
SegmentDifferences obtains the difference between two spatially aligned point clouds and returns the
difference between them for a maximum given distance threshold.
</description>
</class>
</library>

View File

@ -0,0 +1,13 @@
<!-- PCL Surface reconstruction library component -->
<library path="lib/libpcl_ros_surface">
<class name="pcl/MovingLeastSquares" type="MovingLeastSquares" base_class_type="nodelet::Nodelet">
<description>
MovingLeastSquares is an implementation of the MLS algorithm for data reconstruction through bivariate polynomial fitting.
</description>
</class>
<class name="pcl/ConvexHull2D" type="ConvexHull2D" base_class_type="nodelet::Nodelet">
<description>
ConvexHull2D represents a 2D ConvexHull implementation.
</description>
</class>
</library>