From ec69700a9cfbd3bf07c3898ea481a5657f4eeb5e Mon Sep 17 00:00:00 2001 From: "Kin-Yiu, Wong" <102582011@cc.ncu.edu.tw> Date: Wed, 13 Jul 2022 10:31:45 +0800 Subject: [PATCH] main code update aux training --- utils/loss.py | 499 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 499 insertions(+) diff --git a/utils/loss.py b/utils/loss.py index a414ba24..6448cacf 100644 --- a/utils/loss.py +++ b/utils/loss.py @@ -1163,3 +1163,502 @@ class ComputeLossBinOTA: anch.append(anchors[a]) # anchors return indices, anch + + +class ComputeLossAuxOTA: + # Compute losses + def __init__(self, model, autobalance=False): + super(ComputeLossAuxOTA, self).__init__() + device = next(model.parameters()).device # get model device + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module + self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 + self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance + for k in 'na', 'nc', 'nl', 'anchors', 'stride': + setattr(self, k, getattr(det, k)) + + def __call__(self, p, targets, imgs): # predictions, targets, model + device = targets.device + lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) + bs_aux, as_aux_, gjs_aux, gis_aux, targets_aux, anchors_aux = self.build_targets2(p[:self.nl], targets, imgs) + bs, as_, gjs, gis, targets, anchors = self.build_targets(p[:self.nl], targets, imgs) + pre_gen_gains_aux = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]] + pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]] + + + # Losses + for i in range(self.nl): # layer index, layer predictions + pi = p[i] + pi_aux = p[i+self.nl] + b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx + b_aux, a_aux, gj_aux, gi_aux = bs_aux[i], as_aux_[i], gjs_aux[i], gis_aux[i] # image, anchor, gridy, gridx + tobj = torch.zeros_like(pi[..., 0], device=device) # target obj + tobj_aux = torch.zeros_like(pi_aux[..., 0], device=device) # target obj + + n = b.shape[0] # number of targets + n_aux = b_aux.shape[0] # number of targets + if n: + ps = pi[b, a, gj, gi] # prediction subset corresponding to targets + ps_aux = pi_aux[b_aux, a_aux, gj_aux, gi_aux] # prediction subset corresponding to targets + + # Regression + grid = torch.stack([gi, gj], dim=1) + grid_aux = torch.stack([gi_aux, gj_aux], dim=1) + pxy = ps[:, :2].sigmoid() * 2. - 0.5 + pxy_aux = ps_aux[:, :2].sigmoid() * 2. - 0.5 + #pxy = ps[:, :2].sigmoid() * 3. - 1. + pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] + pwh_aux = (ps_aux[:, 2:4].sigmoid() * 2) ** 2 * anchors_aux[i] + pbox = torch.cat((pxy, pwh), 1) # predicted box + pbox_aux = torch.cat((pxy_aux, pwh_aux), 1) # predicted box + selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i] + selected_tbox_aux = targets_aux[i][:, 2:6] * pre_gen_gains_aux[i] + selected_tbox[:, :2] -= grid + selected_tbox_aux[:, :2] -= grid_aux + iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target) + iou_aux = bbox_iou(pbox_aux.T, selected_tbox_aux, x1y1x2y2=False, CIoU=True) # iou(prediction, target) + lbox += (1.0 - iou).mean() + 0.25 * (1.0 - iou_aux).mean() # iou loss + + # Objectness + tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio + tobj_aux[b_aux, a_aux, gj_aux, gi_aux] = (1.0 - self.gr) + self.gr * iou_aux.detach().clamp(0).type(tobj_aux.dtype) # iou ratio + + # Classification + selected_tcls = targets[i][:, 1].long() + selected_tcls_aux = targets_aux[i][:, 1].long() + if self.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets + t_aux = torch.full_like(ps_aux[:, 5:], self.cn, device=device) # targets + t[range(n), selected_tcls] = self.cp + t_aux[range(n_aux), selected_tcls_aux] = self.cp + lcls += self.BCEcls(ps[:, 5:], t) + 0.25 * self.BCEcls(ps_aux[:, 5:], t_aux) # BCE + + # Append targets to text file + # with open('targets.txt', 'a') as file: + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] + + obji = self.BCEobj(pi[..., 4], tobj) + obji_aux = self.BCEobj(pi_aux[..., 4], tobj_aux) + lobj += obji * self.balance[i] + 0.25 * obji_aux * self.balance[i] # obj loss + if self.autobalance: + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() + + if self.autobalance: + self.balance = [x / self.balance[self.ssi] for x in self.balance] + lbox *= self.hyp['box'] + lobj *= self.hyp['obj'] + lcls *= self.hyp['cls'] + bs = tobj.shape[0] # batch size + + loss = lbox + lobj + lcls + return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() + + def build_targets(self, p, targets, imgs): + + indices, anch = self.find_3_positive(p, targets) + + matching_bs = [[] for pp in p] + matching_as = [[] for pp in p] + matching_gjs = [[] for pp in p] + matching_gis = [[] for pp in p] + matching_targets = [[] for pp in p] + matching_anchs = [[] for pp in p] + + nl = len(p) + + for batch_idx in range(p[0].shape[0]): + + b_idx = targets[:, 0]==batch_idx + this_target = targets[b_idx] + if this_target.shape[0] == 0: + continue + + txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] + txyxy = xywh2xyxy(txywh) + + pxyxys = [] + p_cls = [] + p_obj = [] + from_which_layer = [] + all_b = [] + all_a = [] + all_gj = [] + all_gi = [] + all_anch = [] + + for i, pi in enumerate(p): + + b, a, gj, gi = indices[i] + idx = (b == batch_idx) + b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] + all_b.append(b) + all_a.append(a) + all_gj.append(gj) + all_gi.append(gi) + all_anch.append(anch[i][idx]) + from_which_layer.append(torch.ones(size=(len(b),)) * i) + + fg_pred = pi[b, a, gj, gi] + p_obj.append(fg_pred[:, 4:5]) + p_cls.append(fg_pred[:, 5:]) + + grid = torch.stack([gi, gj], dim=1) + pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. + #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i] + pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. + pxywh = torch.cat([pxy, pwh], dim=-1) + pxyxy = xywh2xyxy(pxywh) + pxyxys.append(pxyxy) + + pxyxys = torch.cat(pxyxys, dim=0) + if pxyxys.shape[0] == 0: + continue + p_obj = torch.cat(p_obj, dim=0) + p_cls = torch.cat(p_cls, dim=0) + from_which_layer = torch.cat(from_which_layer, dim=0) + all_b = torch.cat(all_b, dim=0) + all_a = torch.cat(all_a, dim=0) + all_gj = torch.cat(all_gj, dim=0) + all_gi = torch.cat(all_gi, dim=0) + all_anch = torch.cat(all_anch, dim=0) + + pair_wise_iou = box_iou(txyxy, pxyxys) + + pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) + + top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1) + dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) + + gt_cls_per_image = ( + F.one_hot(this_target[:, 1].to(torch.int64), self.nc) + .float() + .unsqueeze(1) + .repeat(1, pxyxys.shape[0], 1) + ) + + num_gt = this_target.shape[0] + cls_preds_ = ( + p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + ) + + y = cls_preds_.sqrt_() + pair_wise_cls_loss = F.binary_cross_entropy_with_logits( + torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" + ).sum(-1) + del cls_preds_ + + cost = ( + pair_wise_cls_loss + + 3.0 * pair_wise_iou_loss + ) + + matching_matrix = torch.zeros_like(cost) + + for gt_idx in range(num_gt): + _, pos_idx = torch.topk( + cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False + ) + matching_matrix[gt_idx][pos_idx] = 1.0 + + del top_k, dynamic_ks + anchor_matching_gt = matching_matrix.sum(0) + if (anchor_matching_gt > 1).sum() > 0: + _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) + matching_matrix[:, anchor_matching_gt > 1] *= 0.0 + matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 + fg_mask_inboxes = matching_matrix.sum(0) > 0.0 + matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) + + from_which_layer = from_which_layer[fg_mask_inboxes] + all_b = all_b[fg_mask_inboxes] + all_a = all_a[fg_mask_inboxes] + all_gj = all_gj[fg_mask_inboxes] + all_gi = all_gi[fg_mask_inboxes] + all_anch = all_anch[fg_mask_inboxes] + + this_target = this_target[matched_gt_inds] + + for i in range(nl): + layer_idx = from_which_layer == i + matching_bs[i].append(all_b[layer_idx]) + matching_as[i].append(all_a[layer_idx]) + matching_gjs[i].append(all_gj[layer_idx]) + matching_gis[i].append(all_gi[layer_idx]) + matching_targets[i].append(this_target[layer_idx]) + matching_anchs[i].append(all_anch[layer_idx]) + + for i in range(nl): + matching_bs[i] = torch.cat(matching_bs[i], dim=0) + matching_as[i] = torch.cat(matching_as[i], dim=0) + matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) + matching_gis[i] = torch.cat(matching_gis[i], dim=0) + matching_targets[i] = torch.cat(matching_targets[i], dim=0) + matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) + + return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs + + def build_targets2(self, p, targets, imgs): + + indices, anch = self.find_5_positive(p, targets) + + matching_bs = [[] for pp in p] + matching_as = [[] for pp in p] + matching_gjs = [[] for pp in p] + matching_gis = [[] for pp in p] + matching_targets = [[] for pp in p] + matching_anchs = [[] for pp in p] + + nl = len(p) + + for batch_idx in range(p[0].shape[0]): + + b_idx = targets[:, 0]==batch_idx + this_target = targets[b_idx] + if this_target.shape[0] == 0: + continue + + txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] + txyxy = xywh2xyxy(txywh) + + pxyxys = [] + p_cls = [] + p_obj = [] + from_which_layer = [] + all_b = [] + all_a = [] + all_gj = [] + all_gi = [] + all_anch = [] + + for i, pi in enumerate(p): + + b, a, gj, gi = indices[i] + idx = (b == batch_idx) + b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] + all_b.append(b) + all_a.append(a) + all_gj.append(gj) + all_gi.append(gi) + all_anch.append(anch[i][idx]) + from_which_layer.append(torch.ones(size=(len(b),)) * i) + + fg_pred = pi[b, a, gj, gi] + p_obj.append(fg_pred[:, 4:5]) + p_cls.append(fg_pred[:, 5:]) + + grid = torch.stack([gi, gj], dim=1) + pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. + #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i] + pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. + pxywh = torch.cat([pxy, pwh], dim=-1) + pxyxy = xywh2xyxy(pxywh) + pxyxys.append(pxyxy) + + pxyxys = torch.cat(pxyxys, dim=0) + if pxyxys.shape[0] == 0: + continue + p_obj = torch.cat(p_obj, dim=0) + p_cls = torch.cat(p_cls, dim=0) + from_which_layer = torch.cat(from_which_layer, dim=0) + all_b = torch.cat(all_b, dim=0) + all_a = torch.cat(all_a, dim=0) + all_gj = torch.cat(all_gj, dim=0) + all_gi = torch.cat(all_gi, dim=0) + all_anch = torch.cat(all_anch, dim=0) + + pair_wise_iou = box_iou(txyxy, pxyxys) + + pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) + + top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1) + dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) + + gt_cls_per_image = ( + F.one_hot(this_target[:, 1].to(torch.int64), self.nc) + .float() + .unsqueeze(1) + .repeat(1, pxyxys.shape[0], 1) + ) + + num_gt = this_target.shape[0] + cls_preds_ = ( + p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + ) + + y = cls_preds_.sqrt_() + pair_wise_cls_loss = F.binary_cross_entropy_with_logits( + torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" + ).sum(-1) + del cls_preds_ + + cost = ( + pair_wise_cls_loss + + 3.0 * pair_wise_iou_loss + ) + + matching_matrix = torch.zeros_like(cost) + + for gt_idx in range(num_gt): + _, pos_idx = torch.topk( + cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False + ) + matching_matrix[gt_idx][pos_idx] = 1.0 + + del top_k, dynamic_ks + anchor_matching_gt = matching_matrix.sum(0) + if (anchor_matching_gt > 1).sum() > 0: + _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) + matching_matrix[:, anchor_matching_gt > 1] *= 0.0 + matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 + fg_mask_inboxes = matching_matrix.sum(0) > 0.0 + matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) + + from_which_layer = from_which_layer[fg_mask_inboxes] + all_b = all_b[fg_mask_inboxes] + all_a = all_a[fg_mask_inboxes] + all_gj = all_gj[fg_mask_inboxes] + all_gi = all_gi[fg_mask_inboxes] + all_anch = all_anch[fg_mask_inboxes] + + this_target = this_target[matched_gt_inds] + + for i in range(nl): + layer_idx = from_which_layer == i + matching_bs[i].append(all_b[layer_idx]) + matching_as[i].append(all_a[layer_idx]) + matching_gjs[i].append(all_gj[layer_idx]) + matching_gis[i].append(all_gi[layer_idx]) + matching_targets[i].append(this_target[layer_idx]) + matching_anchs[i].append(all_anch[layer_idx]) + + for i in range(nl): + matching_bs[i] = torch.cat(matching_bs[i], dim=0) + matching_as[i] = torch.cat(matching_as[i], dim=0) + matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) + matching_gis[i] = torch.cat(matching_gis[i], dim=0) + matching_targets[i] = torch.cat(matching_targets[i], dim=0) + matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) + + return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs + + def find_5_positive(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + indices, anch = [], [] + gain = torch.ones(7, device=targets.device) # normalized to gridspace gain + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 1.0 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(self.nl): + anchors = self.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxi % 1. < g) & (gxi > 1.)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 6].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + anch.append(anchors[a]) # anchors + + return indices, anch + + def find_3_positive(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + indices, anch = [], [] + gain = torch.ones(7, device=targets.device) # normalized to gridspace gain + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(self.nl): + anchors = self.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxi % 1. < g) & (gxi > 1.)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 6].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + anch.append(anchors[a]) # anchors + + return indices, anch