YOLOv3 general updates, improvements and fixes (#2011)
* YOLOv3 updates * Add missing files * Reformat * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Reformat * Reformat * Reformat * Reformat * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
1a2d5c6a5a
commit
f50bcfcc3e
@ -1,5 +1,5 @@
|
|||||||
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
|
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
|
||||||
#.git
|
.git
|
||||||
.cache
|
.cache
|
||||||
.idea
|
.idea
|
||||||
runs
|
runs
|
||||||
@ -15,6 +15,7 @@ data/samples/*
|
|||||||
**/*.pt
|
**/*.pt
|
||||||
**/*.pth
|
**/*.pth
|
||||||
**/*.onnx
|
**/*.onnx
|
||||||
|
**/*.engine
|
||||||
**/*.mlmodel
|
**/*.mlmodel
|
||||||
**/*.torchscript
|
**/*.torchscript
|
||||||
**/*.torchscript.pt
|
**/*.torchscript.pt
|
||||||
@ -23,6 +24,7 @@ data/samples/*
|
|||||||
**/*.pb
|
**/*.pb
|
||||||
*_saved_model/
|
*_saved_model/
|
||||||
*_web_model/
|
*_web_model/
|
||||||
|
*_openvino_model/
|
||||||
|
|
||||||
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
||||||
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
||||||
|
|||||||
5
.github/FUNDING.yml
vendored
5
.github/FUNDING.yml
vendored
@ -1,5 +0,0 @@
|
|||||||
# These are supported funding model platforms
|
|
||||||
|
|
||||||
github: glenn-jocher
|
|
||||||
patreon: ultralytics
|
|
||||||
open_collective: ultralytics
|
|
||||||
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@ -12,10 +12,10 @@ body:
|
|||||||
attributes:
|
attributes:
|
||||||
label: Search before asking
|
label: Search before asking
|
||||||
description: >
|
description: >
|
||||||
Please search the [issues](https://github.com/ultralytics/yolov3/issues) to see if a similar bug report already exists.
|
Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
|
||||||
options:
|
options:
|
||||||
- label: >
|
- label: >
|
||||||
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov3/issues) and found no similar bug report.
|
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
|
||||||
required: true
|
required: true
|
||||||
|
|
||||||
- type: dropdown
|
- type: dropdown
|
||||||
@ -79,7 +79,7 @@ body:
|
|||||||
attributes:
|
attributes:
|
||||||
label: Are you willing to submit a PR?
|
label: Are you willing to submit a PR?
|
||||||
description: >
|
description: >
|
||||||
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov3/pulls) (PR) to help improve YOLOv3 for everyone, especially if you have a good understanding of how to implement a fix or feature.
|
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv3 for everyone, especially if you have a good understanding of how to implement a fix or feature.
|
||||||
See the YOLOv3 [Contributing Guide](https://github.com/ultralytics/yolov3/blob/master/CONTRIBUTING.md) to get started.
|
See the YOLOv3 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
|
||||||
options:
|
options:
|
||||||
- label: Yes I'd like to help by submitting a PR!
|
- label: Yes I'd like to help by submitting a PR!
|
||||||
|
|||||||
6
.github/ISSUE_TEMPLATE/config.yml
vendored
6
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1,8 +1,8 @@
|
|||||||
blank_issues_enabled: true
|
blank_issues_enabled: true
|
||||||
contact_links:
|
contact_links:
|
||||||
- name: Slack
|
- name: 💬 Forum
|
||||||
url: https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg
|
url: https://community.ultralytics.com/
|
||||||
about: Ask on Ultralytics Slack Forum
|
about: Ask on Ultralytics Community Forum
|
||||||
- name: Stack Overflow
|
- name: Stack Overflow
|
||||||
url: https://stackoverflow.com/search?q=YOLOv3
|
url: https://stackoverflow.com/search?q=YOLOv3
|
||||||
about: Ask on Stack Overflow with 'YOLOv3' tag
|
about: Ask on Stack Overflow with 'YOLOv3' tag
|
||||||
|
|||||||
8
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
8
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
@ -12,10 +12,10 @@ body:
|
|||||||
attributes:
|
attributes:
|
||||||
label: Search before asking
|
label: Search before asking
|
||||||
description: >
|
description: >
|
||||||
Please search the [issues](https://github.com/ultralytics/yolov3/issues) to see if a similar feature request already exists.
|
Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
|
||||||
options:
|
options:
|
||||||
- label: >
|
- label: >
|
||||||
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov3/issues) and found no similar feature requests.
|
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
|
||||||
required: true
|
required: true
|
||||||
|
|
||||||
- type: textarea
|
- type: textarea
|
||||||
@ -44,7 +44,7 @@ body:
|
|||||||
attributes:
|
attributes:
|
||||||
label: Are you willing to submit a PR?
|
label: Are you willing to submit a PR?
|
||||||
description: >
|
description: >
|
||||||
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov3/pulls) (PR) to help improve YOLOv3 for everyone, especially if you have a good understanding of how to implement a fix or feature.
|
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv3 for everyone, especially if you have a good understanding of how to implement a fix or feature.
|
||||||
See the YOLOv3 [Contributing Guide](https://github.com/ultralytics/yolov3/blob/master/CONTRIBUTING.md) to get started.
|
See the YOLOv3 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
|
||||||
options:
|
options:
|
||||||
- label: Yes I'd like to help by submitting a PR!
|
- label: Yes I'd like to help by submitting a PR!
|
||||||
|
|||||||
4
.github/ISSUE_TEMPLATE/question.yml
vendored
4
.github/ISSUE_TEMPLATE/question.yml
vendored
@ -12,10 +12,10 @@ body:
|
|||||||
attributes:
|
attributes:
|
||||||
label: Search before asking
|
label: Search before asking
|
||||||
description: >
|
description: >
|
||||||
Please search the [issues](https://github.com/ultralytics/yolov3/issues) and [discussions](https://github.com/ultralytics/yolov3/discussions) to see if a similar question already exists.
|
Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
|
||||||
options:
|
options:
|
||||||
- label: >
|
- label: >
|
||||||
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov3/issues) and [discussions](https://github.com/ultralytics/yolov3/discussions) and found no similar questions.
|
I have searched the YOLOv3 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
|
||||||
required: true
|
required: true
|
||||||
|
|
||||||
- type: textarea
|
- type: textarea
|
||||||
|
|||||||
9
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
9
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
<!--
|
||||||
|
Thank you for submitting a YOLOv5 🚀 Pull Request! We want to make contributing to YOLOv5 as easy and transparent as possible. A few tips to get you started:
|
||||||
|
|
||||||
|
- Search existing YOLOv5 [PRs](https://github.com/ultralytics/yolov5/pull) to see if a similar PR already exists.
|
||||||
|
- Link this PR to a YOLOv5 [issue](https://github.com/ultralytics/yolov5/issues) to help us understand what bug fix or feature is being implemented.
|
||||||
|
- Provide before and after profiling/inference/training results to help us quantify the improvement your PR provides (if applicable).
|
||||||
|
|
||||||
|
Please see our ✅ [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) for more details.
|
||||||
|
-->
|
||||||
47
.github/workflows/ci-testing.yml
vendored
47
.github/workflows/ci-testing.yml
vendored
@ -5,9 +5,9 @@ name: YOLOv3 CI
|
|||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches: [ master ]
|
branches: [master]
|
||||||
pull_request:
|
pull_request:
|
||||||
branches: [ master ]
|
branches: [master]
|
||||||
schedule:
|
schedule:
|
||||||
- cron: '0 0 * * *' # runs at 00:00 UTC every day
|
- cron: '0 0 * * *' # runs at 00:00 UTC every day
|
||||||
|
|
||||||
@ -18,22 +18,22 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
os: [ ubuntu-latest, windows-latest ] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
|
os: [ubuntu-latest, windows-latest] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
|
||||||
python-version: [ '3.10' ]
|
python-version: ['3.10']
|
||||||
model: [ yolov3-tiny ]
|
model: [yolov5n]
|
||||||
include:
|
include:
|
||||||
- os: ubuntu-latest
|
- os: ubuntu-latest
|
||||||
python-version: '3.7' # '3.6.8' min
|
python-version: '3.7' # '3.6.8' min
|
||||||
model: yolov3-tiny
|
model: yolov5n
|
||||||
- os: ubuntu-latest
|
- os: ubuntu-latest
|
||||||
python-version: '3.8'
|
python-version: '3.8'
|
||||||
model: yolov3-tiny
|
model: yolov5n
|
||||||
- os: ubuntu-latest
|
- os: ubuntu-latest
|
||||||
python-version: '3.9'
|
python-version: '3.9'
|
||||||
model: yolov3-tiny
|
model: yolov5n
|
||||||
- os: ubuntu-latest
|
- os: ubuntu-latest
|
||||||
python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8
|
python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8
|
||||||
model: yolov3-tiny
|
model: yolov5n
|
||||||
torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/
|
torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v3
|
||||||
@ -97,3 +97,32 @@ jobs:
|
|||||||
model(im) # warmup, build grids for trace
|
model(im) # warmup, build grids for trace
|
||||||
torch.jit.trace(model, [im])
|
torch.jit.trace(model, [im])
|
||||||
EOF
|
EOF
|
||||||
|
- name: Test segmentation
|
||||||
|
shell: bash # for Windows compatibility
|
||||||
|
run: |
|
||||||
|
m=${{ matrix.model }}-seg # official weights
|
||||||
|
b=runs/train-seg/exp/weights/best # best.pt checkpoint
|
||||||
|
python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
|
||||||
|
python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train
|
||||||
|
for d in cpu; do # devices
|
||||||
|
for w in $m $b; do # weights
|
||||||
|
python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
|
||||||
|
python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict
|
||||||
|
python export.py --weights $w.pt --img 64 --include torchscript --device $d # export
|
||||||
|
done
|
||||||
|
done
|
||||||
|
- name: Test classification
|
||||||
|
shell: bash # for Windows compatibility
|
||||||
|
run: |
|
||||||
|
m=${{ matrix.model }}-cls.pt # official weights
|
||||||
|
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
|
||||||
|
python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train
|
||||||
|
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val
|
||||||
|
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict
|
||||||
|
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
|
||||||
|
python export.py --weights $b --img 64 --include torchscript # export
|
||||||
|
python - <<EOF
|
||||||
|
import torch
|
||||||
|
for path in '$m', '$b':
|
||||||
|
model = torch.hub.load('.', 'custom', path=path, source='local')
|
||||||
|
EOF
|
||||||
|
|||||||
57
.github/workflows/docker.yml
vendored
Normal file
57
.github/workflows/docker.yml
vendored
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov3
|
||||||
|
|
||||||
|
name: Publish Docker Images
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: [none] # use DockerHub AutoBuild
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
docker:
|
||||||
|
if: github.repository == 'ultralytics/yolov3'
|
||||||
|
name: Push Docker image to Docker Hub
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout repo
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: Set up QEMU
|
||||||
|
uses: docker/setup-qemu-action@v2
|
||||||
|
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v2
|
||||||
|
|
||||||
|
- name: Login to Docker Hub
|
||||||
|
uses: docker/login-action@v2
|
||||||
|
with:
|
||||||
|
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||||
|
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||||
|
|
||||||
|
- name: Build and push arm64 image
|
||||||
|
uses: docker/build-push-action@v4
|
||||||
|
continue-on-error: true
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
platforms: linux/arm64
|
||||||
|
file: utils/docker/Dockerfile-arm64
|
||||||
|
push: true
|
||||||
|
tags: ultralytics/yolov3:latest-arm64
|
||||||
|
|
||||||
|
- name: Build and push CPU image
|
||||||
|
uses: docker/build-push-action@v4
|
||||||
|
continue-on-error: true
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
file: utils/docker/Dockerfile-cpu
|
||||||
|
push: true
|
||||||
|
tags: ultralytics/yolov3:latest-cpu
|
||||||
|
|
||||||
|
- name: Build and push GPU image
|
||||||
|
uses: docker/build-push-action@v4
|
||||||
|
continue-on-error: true
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
file: utils/docker/Dockerfile
|
||||||
|
push: true
|
||||||
|
tags: ultralytics/yolov3:latest
|
||||||
16
.github/workflows/greetings.yml
vendored
16
.github/workflows/greetings.yml
vendored
@ -1,4 +1,4 @@
|
|||||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
name: Greetings
|
name: Greetings
|
||||||
|
|
||||||
@ -33,8 +33,8 @@ jobs:
|
|||||||
|
|
||||||
[**Python>=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started:
|
[**Python>=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started:
|
||||||
```bash
|
```bash
|
||||||
git clone https://github.com/ultralytics/yolov3 # clone
|
git clone https://github.com/ultralytics/yolov5 # clone
|
||||||
cd yolov3
|
cd yolov5
|
||||||
pip install -r requirements.txt # install
|
pip install -r requirements.txt # install
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -45,7 +45,7 @@ jobs:
|
|||||||
- **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
- **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||||
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
||||||
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
||||||
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
|
||||||
|
|
||||||
## Status
|
## Status
|
||||||
|
|
||||||
@ -53,9 +53,13 @@ jobs:
|
|||||||
|
|
||||||
If this badge is green, all [YOLOv3 GitHub Actions](https://github.com/ultralytics/yolov3/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv3 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
If this badge is green, all [YOLOv3 GitHub Actions](https://github.com/ultralytics/yolov3/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv3 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||||
|
|
||||||
## YOLOv8
|
## Introducing YOLOv8 🚀
|
||||||
|
|
||||||
Ultralytics YOLOv8 🚀 is our new cutting-edge, state-of-the-art (SOTA) model released at [https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics). YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks. See the [YOLOv8 Docs] for details and get started with:
|
We're excited to announce the launch of our latest state-of-the-art (SOTA) object detection model for 2023 - [YOLOv8](https://github.com/ultralytics/ultralytics) 🚀!
|
||||||
|
|
||||||
|
Designed to be fast, accurate, and easy to use, YOLOv8 is an ideal choice for a wide range of object detection, image segmentation and image classification tasks. With YOLOv8, you'll be able to quickly and accurately detect objects in real-time, streamline your workflows, and achieve new levels of accuracy in your projects.
|
||||||
|
|
||||||
|
Check out our [YOLOv8 Docs](https://docs.ultralytics.com/) for details and get started with:
|
||||||
```bash
|
```bash
|
||||||
pip install ultralytics
|
pip install ultralytics
|
||||||
```
|
```
|
||||||
|
|||||||
21
.github/workflows/rebase.yml
vendored
21
.github/workflows/rebase.yml
vendored
@ -1,21 +0,0 @@
|
|||||||
# https://github.com/marketplace/actions/automatic-rebase
|
|
||||||
|
|
||||||
name: Automatic Rebase
|
|
||||||
on:
|
|
||||||
issue_comment:
|
|
||||||
types: [created]
|
|
||||||
jobs:
|
|
||||||
rebase:
|
|
||||||
name: Rebase
|
|
||||||
if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase')
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
steps:
|
|
||||||
- name: Checkout the latest code
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
token: ${{ secrets.ACTIONS_TOKEN }}
|
|
||||||
fetch-depth: 0 # otherwise, you will fail to push refs to dest repo
|
|
||||||
- name: Automatic Rebase
|
|
||||||
uses: cirrus-actions/rebase@1.8
|
|
||||||
env:
|
|
||||||
GITHUB_TOKEN: ${{ secrets.ACTIONS_TOKEN }}
|
|
||||||
18
.github/workflows/stale.yml
vendored
18
.github/workflows/stale.yml
vendored
@ -3,7 +3,7 @@
|
|||||||
name: Close stale issues
|
name: Close stale issues
|
||||||
on:
|
on:
|
||||||
schedule:
|
schedule:
|
||||||
- cron: "0 0 * * *"
|
- cron: '0 0 * * *' # Runs at 00:00 UTC every day
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
stale:
|
stale:
|
||||||
@ -15,9 +15,9 @@ jobs:
|
|||||||
stale-issue-message: |
|
stale-issue-message: |
|
||||||
👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.
|
👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.
|
||||||
|
|
||||||
Access additional [YOLOv3](https://ultralytics.com/yolov3) 🚀 resources:
|
Access additional [YOLOv3](https://ultralytics.com/yolov5) 🚀 resources:
|
||||||
- **Wiki** – https://github.com/ultralytics/yolov3/wiki
|
- **Wiki** – https://github.com/ultralytics/yolov5/wiki
|
||||||
- **Tutorials** – https://github.com/ultralytics/yolov3#tutorials
|
- **Tutorials** – https://github.com/ultralytics/yolov5#tutorials
|
||||||
- **Docs** – https://docs.ultralytics.com
|
- **Docs** – https://docs.ultralytics.com
|
||||||
|
|
||||||
Access additional [Ultralytics](https://ultralytics.com) ⚡ resources:
|
Access additional [Ultralytics](https://ultralytics.com) ⚡ resources:
|
||||||
@ -32,7 +32,9 @@ jobs:
|
|||||||
Thank you for your contributions to YOLOv3 🚀 and Vision AI ⭐!
|
Thank you for your contributions to YOLOv3 🚀 and Vision AI ⭐!
|
||||||
|
|
||||||
stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv3 🚀 and Vision AI ⭐.'
|
stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv3 🚀 and Vision AI ⭐.'
|
||||||
days-before-stale: 30
|
days-before-issue-stale: 30
|
||||||
days-before-close: 5
|
days-before-issue-close: 10
|
||||||
exempt-issue-labels: 'documentation,tutorial'
|
days-before-pr-stale: 90
|
||||||
operations-per-run: 100 # The maximum number of operations per run, used to control rate limiting.
|
days-before-pr-close: 30
|
||||||
|
exempt-issue-labels: 'documentation,tutorial,TODO'
|
||||||
|
operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.
|
||||||
|
|||||||
26
.github/workflows/translate-readme.yml
vendored
Normal file
26
.github/workflows/translate-readme.yml
vendored
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# README translation action to translate README.md to Chinese as README.zh-CN.md on any change to README.md
|
||||||
|
|
||||||
|
name: Translate README
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- translate_readme # replace with 'master' to enable action
|
||||||
|
paths:
|
||||||
|
- README.md
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
Translate:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
- name: Setup Node.js
|
||||||
|
uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 16
|
||||||
|
# ISO Language Codes: https://cloud.google.com/translate/docs/languages
|
||||||
|
- name: Adding README - Chinese Simplified
|
||||||
|
uses: dephraiim/translate-readme@main
|
||||||
|
with:
|
||||||
|
LANG: zh-CN
|
||||||
9
.gitignore
vendored
9
.gitignore
vendored
@ -26,7 +26,11 @@
|
|||||||
storage.googleapis.com
|
storage.googleapis.com
|
||||||
runs/*
|
runs/*
|
||||||
data/*
|
data/*
|
||||||
!data/hyps/*
|
data/images/*
|
||||||
|
!data/*.yaml
|
||||||
|
!data/hyps
|
||||||
|
!data/scripts
|
||||||
|
!data/images
|
||||||
!data/images/zidane.jpg
|
!data/images/zidane.jpg
|
||||||
!data/images/bus.jpg
|
!data/images/bus.jpg
|
||||||
!data/*.sh
|
!data/*.sh
|
||||||
@ -48,12 +52,15 @@ VOC/
|
|||||||
*.pt
|
*.pt
|
||||||
*.pb
|
*.pb
|
||||||
*.onnx
|
*.onnx
|
||||||
|
*.engine
|
||||||
*.mlmodel
|
*.mlmodel
|
||||||
*.torchscript
|
*.torchscript
|
||||||
*.tflite
|
*.tflite
|
||||||
*.h5
|
*.h5
|
||||||
*_saved_model/
|
*_saved_model/
|
||||||
*_web_model/
|
*_web_model/
|
||||||
|
*_openvino_model/
|
||||||
|
*_paddle_model/
|
||||||
darknet53.conv.74
|
darknet53.conv.74
|
||||||
yolov3-tiny.conv.15
|
yolov3-tiny.conv.15
|
||||||
|
|
||||||
|
|||||||
@ -4,18 +4,19 @@
|
|||||||
default_language_version:
|
default_language_version:
|
||||||
python: python3.8
|
python: python3.8
|
||||||
|
|
||||||
|
exclude: 'docs/'
|
||||||
# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
|
# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
|
||||||
ci:
|
ci:
|
||||||
autofix_prs: true
|
autofix_prs: true
|
||||||
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
||||||
autoupdate_schedule: quarterly
|
autoupdate_schedule: monthly
|
||||||
# submodules: true
|
# submodules: true
|
||||||
|
|
||||||
repos:
|
repos:
|
||||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||||
rev: v4.3.0
|
rev: v4.4.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: end-of-file-fixer
|
# - id: end-of-file-fixer
|
||||||
- id: trailing-whitespace
|
- id: trailing-whitespace
|
||||||
- id: check-case-conflict
|
- id: check-case-conflict
|
||||||
- id: check-yaml
|
- id: check-yaml
|
||||||
@ -24,43 +25,48 @@ repos:
|
|||||||
- id: check-docstring-first
|
- id: check-docstring-first
|
||||||
|
|
||||||
- repo: https://github.com/asottile/pyupgrade
|
- repo: https://github.com/asottile/pyupgrade
|
||||||
rev: v2.34.0
|
rev: v3.3.1
|
||||||
hooks:
|
hooks:
|
||||||
- id: pyupgrade
|
- id: pyupgrade
|
||||||
args: [--py36-plus]
|
|
||||||
name: Upgrade code
|
name: Upgrade code
|
||||||
|
args: [--py37-plus]
|
||||||
|
|
||||||
- repo: https://github.com/PyCQA/isort
|
# - repo: https://github.com/PyCQA/isort
|
||||||
rev: 5.10.1
|
# rev: 5.11.4
|
||||||
|
# hooks:
|
||||||
|
# - id: isort
|
||||||
|
# name: Sort imports
|
||||||
|
|
||||||
|
- repo: https://github.com/google/yapf
|
||||||
|
rev: v0.32.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: isort
|
- id: yapf
|
||||||
name: Sort imports
|
name: YAPF formatting
|
||||||
|
|
||||||
# TODO
|
- repo: https://github.com/executablebooks/mdformat
|
||||||
#- repo: https://github.com/pre-commit/mirrors-yapf
|
rev: 0.7.16
|
||||||
# rev: v0.31.0
|
hooks:
|
||||||
# hooks:
|
- id: mdformat
|
||||||
# - id: yapf
|
name: MD formatting
|
||||||
# name: formatting
|
additional_dependencies:
|
||||||
|
- mdformat-gfm
|
||||||
# TODO
|
- mdformat-black
|
||||||
#- repo: https://github.com/executablebooks/mdformat
|
# exclude: "README.md|README.zh-CN.md|CONTRIBUTING.md"
|
||||||
# rev: 0.7.7
|
|
||||||
# hooks:
|
|
||||||
# - id: mdformat
|
|
||||||
# additional_dependencies:
|
|
||||||
# - mdformat-gfm
|
|
||||||
# - mdformat-black
|
|
||||||
# - mdformat_frontmatter
|
|
||||||
|
|
||||||
# TODO
|
|
||||||
#- repo: https://github.com/asottile/yesqa
|
|
||||||
# rev: v1.2.3
|
|
||||||
# hooks:
|
|
||||||
# - id: yesqa
|
|
||||||
|
|
||||||
- repo: https://github.com/PyCQA/flake8
|
- repo: https://github.com/PyCQA/flake8
|
||||||
rev: 4.0.1
|
rev: 6.0.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: flake8
|
- id: flake8
|
||||||
name: PEP8
|
name: PEP8
|
||||||
|
|
||||||
|
#- repo: https://github.com/codespell-project/codespell
|
||||||
|
# rev: v2.2.2
|
||||||
|
# hooks:
|
||||||
|
# - id: codespell
|
||||||
|
# args:
|
||||||
|
# - --ignore-words-list=crate,nd
|
||||||
|
|
||||||
|
#- repo: https://github.com/asottile/yesqa
|
||||||
|
# rev: v1.4.0
|
||||||
|
# hooks:
|
||||||
|
# - id: yesqa
|
||||||
|
|||||||
14
CITATION.cff
Normal file
14
CITATION.cff
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
cff-version: 1.2.0
|
||||||
|
preferred-citation:
|
||||||
|
type: software
|
||||||
|
message: If you use , please cite it as below.
|
||||||
|
authors:
|
||||||
|
- family-names: Jocher
|
||||||
|
given-names: Glenn
|
||||||
|
orcid: "https://orcid.org/0000-0001-5950-6979"
|
||||||
|
title: " by Ultralytics"
|
||||||
|
version: 7.0
|
||||||
|
doi: 10.5281/zenodo.3908559
|
||||||
|
date-released: 2020-5-29
|
||||||
|
license: GPL-3.0
|
||||||
|
url: "https://github.com/ultralytics/yolov5"
|
||||||
@ -1,6 +1,6 @@
|
|||||||
## Contributing to YOLOv3 🚀
|
## Contributing to YOLOv3 🚀
|
||||||
|
|
||||||
We love your input! We want to make contributing to YOLOv3 as easy and transparent as possible, whether it's:
|
We love your input! We want to make contributing to as easy and transparent as possible, whether it's:
|
||||||
|
|
||||||
- Reporting a bug
|
- Reporting a bug
|
||||||
- Discussing the current state of the code
|
- Discussing the current state of the code
|
||||||
@ -8,7 +8,7 @@ We love your input! We want to make contributing to YOLOv3 as easy and transpare
|
|||||||
- Proposing a new feature
|
- Proposing a new feature
|
||||||
- Becoming a maintainer
|
- Becoming a maintainer
|
||||||
|
|
||||||
YOLOv3 works so well due to our combined community effort, and for every small improvement you contribute you will be
|
works so well due to our combined community effort, and for every small improvement you contribute you will be
|
||||||
helping push the frontiers of what's possible in AI 😃!
|
helping push the frontiers of what's possible in AI 😃!
|
||||||
|
|
||||||
## Submitting a Pull Request (PR) 🛠️
|
## Submitting a Pull Request (PR) 🛠️
|
||||||
@ -18,73 +18,72 @@ Submitting a PR is easy! This example shows how to submit a PR for updating `req
|
|||||||
### 1. Select File to Update
|
### 1. Select File to Update
|
||||||
|
|
||||||
Select `requirements.txt` to update by clicking on it in GitHub.
|
Select `requirements.txt` to update by clicking on it in GitHub.
|
||||||
|
|
||||||
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
|
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
|
||||||
|
|
||||||
### 2. Click 'Edit this file'
|
### 2. Click 'Edit this file'
|
||||||
|
|
||||||
Button is in top-right corner.
|
The button is in the top-right corner.
|
||||||
|
|
||||||
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
|
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
|
||||||
|
|
||||||
### 3. Make Changes
|
### 3. Make Changes
|
||||||
|
|
||||||
Change `matplotlib` version from `3.2.2` to `3.3`.
|
Change the `matplotlib` version from `3.2.2` to `3.3`.
|
||||||
|
|
||||||
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
|
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
|
||||||
|
|
||||||
### 4. Preview Changes and Submit PR
|
### 4. Preview Changes and Submit PR
|
||||||
|
|
||||||
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
|
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
|
||||||
for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
|
for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
|
||||||
changes** button. All done, your PR is now submitted to YOLOv3 for review and approval 😃!
|
changes** button. All done, your PR is now submitted to for review and approval 😃!
|
||||||
|
|
||||||
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
|
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
|
||||||
|
|
||||||
### PR recommendations
|
### PR recommendations
|
||||||
|
|
||||||
To allow your work to be integrated as seamlessly as possible, we advise you to:
|
To allow your work to be integrated as seamlessly as possible, we advise you to:
|
||||||
|
|
||||||
- ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an
|
- ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update
|
||||||
automatic [GitHub actions](https://github.com/ultralytics/yolov3/blob/master/.github/workflows/rebase.yml) rebase may
|
your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
|
||||||
be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature'
|
|
||||||
with the name of your local branch:
|
|
||||||
|
|
||||||
```bash
|
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
|
||||||
git remote add upstream https://github.com/ultralytics/yolov3.git
|
|
||||||
git fetch upstream
|
|
||||||
git checkout feature # <----- replace 'feature' with local branch name
|
|
||||||
git merge upstream/master
|
|
||||||
git push -u origin -f
|
|
||||||
```
|
|
||||||
|
|
||||||
- ✅ Verify all Continuous Integration (CI) **checks are passing**.
|
- ✅ Verify all Continuous Integration (CI) **checks are passing**.
|
||||||
|
|
||||||
|
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
|
||||||
|
|
||||||
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
|
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
|
||||||
but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
|
but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
|
||||||
|
|
||||||
## Submitting a Bug Report 🐛
|
## Submitting a Bug Report 🐛
|
||||||
|
|
||||||
If you spot a problem with YOLOv3 please submit a Bug Report!
|
If you spot a problem with please submit a Bug Report!
|
||||||
|
|
||||||
For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
|
For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
|
||||||
short guidelines below to help users provide what we need in order to get started.
|
short guidelines below to help users provide what we need to get started.
|
||||||
|
|
||||||
When asking a question, people will be better able to provide help if you provide **code** that they can easily
|
When asking a question, people will be better able to provide help if you provide **code** that they can easily
|
||||||
understand and use to **reproduce** the problem. This is referred to by community members as creating
|
understand and use to **reproduce** the problem. This is referred to by community members as creating
|
||||||
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
|
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
|
||||||
the problem should be:
|
the problem should be:
|
||||||
|
|
||||||
* ✅ **Minimal** – Use as little code as possible that still produces the same problem
|
- ✅ **Minimal** – Use as little code as possible that still produces the same problem
|
||||||
* ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
|
- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
|
||||||
* ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
|
- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
|
||||||
|
|
||||||
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
|
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
|
||||||
should be:
|
should be:
|
||||||
|
|
||||||
* ✅ **Current** – Verify that your code is up-to-date with current
|
- ✅ **Current** – Verify that your code is up-to-date with the current
|
||||||
GitHub [master](https://github.com/ultralytics/yolov3/tree/master), and if necessary `git pull` or `git clone` a new
|
GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
|
||||||
copy to ensure your problem has not already been resolved by previous commits.
|
copy to ensure your problem has not already been resolved by previous commits.
|
||||||
* ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
|
- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
|
||||||
repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
|
repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
|
||||||
|
|
||||||
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **
|
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
|
||||||
Bug Report** [template](https://github.com/ultralytics/yolov3/issues/new/choose) and providing
|
**Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and provide
|
||||||
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
|
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
|
||||||
understand and diagnose your problem.
|
understand and diagnose your problem.
|
||||||
|
|
||||||
|
|||||||
260
README.md
260
README.md
@ -1,19 +1,30 @@
|
|||||||
<div align="center">
|
<div align="center">
|
||||||
<p>
|
<p>
|
||||||
<a align="left" href="https://ultralytics.com/yolov3" target="_blank">
|
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||||
<img width="850" src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg"></a>
|
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
[English](README.md) | [简体中文](README.zh-CN.md)
|
||||||
<br>
|
<br>
|
||||||
|
|
||||||
<div>
|
<div>
|
||||||
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
|
<a href="https://github.com/ultralytics/yolov3/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov3/actions/workflows/ci-testing.yml/badge.svg" alt=" CI"></a>
|
||||||
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv3 Citation"></a>
|
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt=" Citation"></a>
|
||||||
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
|
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
|
||||||
<br>
|
<br>
|
||||||
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
|
||||||
<a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||||
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
|
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||||
</div>
|
</div>
|
||||||
<br>
|
<br>
|
||||||
|
|
||||||
|
🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source
|
||||||
|
research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours
|
||||||
|
of research and development.
|
||||||
|
|
||||||
|
To request an Enterprise License please complete the form at <a href="https://ultralytics.com/license">Ultralytics
|
||||||
|
Licensing</a>.
|
||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
|
||||||
@ -36,56 +47,64 @@
|
|||||||
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
|
||||||
</div>
|
</div>
|
||||||
|
</div>
|
||||||
<br>
|
<br>
|
||||||
<p>
|
|
||||||
YOLOv3 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
|
|
||||||
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
|
|
||||||
</p>
|
|
||||||
|
|
||||||
<!--
|
## <div align="center">YOLOv8 🚀 NEW</div>
|
||||||
<a align="center" href="https://ultralytics.com/yolov3" target="_blank">
|
|
||||||
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
|
|
||||||
-->
|
|
||||||
|
|
||||||
|
We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model
|
||||||
|
released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**.
|
||||||
|
YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of
|
||||||
|
object detection, image segmentation and image classification tasks.
|
||||||
|
|
||||||
|
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
|
||||||
|
|
||||||
|
```commandline
|
||||||
|
pip install ultralytics
|
||||||
|
```
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<a href="https://ultralytics.com/yolov8" target="_blank">
|
||||||
|
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
## <div align="center">Documentation</div>
|
## <div align="center">Documentation</div>
|
||||||
|
|
||||||
See the [YOLOv3 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
|
See the [ Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. See below for
|
||||||
|
quickstart examples.
|
||||||
## <div align="center">Quick Start Examples</div>
|
|
||||||
|
|
||||||
<details open>
|
<details open>
|
||||||
<summary>Install</summary>
|
<summary>Install</summary>
|
||||||
|
|
||||||
[**Python>=3.6.0**](https://www.python.org/) is required with all
|
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
|
||||||
[requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) installed including
|
[**Python>=3.7.0**](https://www.python.org/) environment, including
|
||||||
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
|
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
|
||||||
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
$ git clone https://github.com/ultralytics/yolov3
|
git clone https://github.com/ultralytics/yolov3 # clone
|
||||||
$ cd yolov3
|
cd yolov3
|
||||||
$ pip install -r requirements.txt
|
pip install -r requirements.txt # install
|
||||||
```
|
```
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details open>
|
<details>
|
||||||
<summary>Inference</summary>
|
<summary>Inference</summary>
|
||||||
|
|
||||||
Inference with YOLOv3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
|
[PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
|
||||||
from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases).
|
inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
|
||||||
|
[release](https://github.com/ultralytics/yolov5/releases).
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# Model
|
# Model
|
||||||
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
|
model = torch.hub.load(
|
||||||
|
"ultralytics/yolov3", "yolov3"
|
||||||
|
) # or yolov3-spp, yolov3-tiny, custom
|
||||||
|
|
||||||
# Images
|
# Images
|
||||||
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
|
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
|
||||||
|
|
||||||
# Inference
|
# Inference
|
||||||
results = model(img)
|
results = model(img)
|
||||||
@ -96,22 +115,24 @@ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>Inference with detect.py</summary>
|
<summary>Inference with detect.py</summary>
|
||||||
|
|
||||||
`detect.py` runs inference on a variety of sources, downloading models automatically from
|
`detect.py` runs inference on a variety of sources,
|
||||||
the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
|
downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
|
||||||
|
the latest [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
$ python detect.py --source 0 # webcam
|
python detect.py --weights yolov5s.pt --source 0 # webcam
|
||||||
img.jpg # image
|
img.jpg # image
|
||||||
vid.mp4 # video
|
vid.mp4 # video
|
||||||
path/ # directory
|
screen # screenshot
|
||||||
path/*.jpg # glob
|
path/ # directory
|
||||||
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
list.txt # list of images
|
||||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
list.streams # list of streams
|
||||||
|
'path/*.jpg' # glob
|
||||||
|
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||||
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||||
```
|
```
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@ -119,6 +140,22 @@ $ python detect.py --source 0 # webcam
|
|||||||
<details>
|
<details>
|
||||||
<summary>Training</summary>
|
<summary>Training</summary>
|
||||||
|
|
||||||
|
The commands below reproduce [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
|
||||||
|
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
|
||||||
|
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
|
||||||
|
[release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
|
||||||
|
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
|
||||||
|
largest `--batch-size` possible, or pass `--batch-size -1` for
|
||||||
|
[AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
|
||||||
|
yolov5s 64
|
||||||
|
yolov5m 40
|
||||||
|
yolov5l 24
|
||||||
|
yolov5x 16
|
||||||
|
```
|
||||||
|
|
||||||
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@ -126,8 +163,8 @@ $ python detect.py --source 0 # webcam
|
|||||||
<details open>
|
<details open>
|
||||||
<summary>Tutorials</summary>
|
<summary>Tutorials</summary>
|
||||||
|
|
||||||
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED
|
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)🚀 RECOMMENDED
|
||||||
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️
|
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)☘️
|
||||||
RECOMMENDED
|
RECOMMENDED
|
||||||
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
|
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
|
||||||
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
|
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
|
||||||
@ -139,9 +176,9 @@ $ python detect.py --source 0 # webcam
|
|||||||
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
|
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
|
||||||
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
|
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
|
||||||
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
|
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
|
||||||
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW
|
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)🌟 NEW
|
||||||
- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
|
- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
|
||||||
- [YOLOv5 with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW
|
- [ with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW
|
||||||
- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet) 🌟 NEW
|
- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet) 🌟 NEW
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@ -156,32 +193,33 @@ $ python detect.py --source 0 # webcam
|
|||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
<a href="https://roboflow.com/?ref=ultralytics">
|
<a href="https://roboflow.com/?ref=ultralytics">
|
||||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
|
||||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||||
<a href="https://cutt.ly/yolov5-readme-clearml">
|
<a href="https://cutt.ly/yolov5-readme-clearml">
|
||||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
|
||||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||||
<a href="https://bit.ly/yolov5-readme-comet">
|
<a href="https://bit.ly/yolov5-readme-comet">
|
||||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-comet.png" width="10%" /></a>
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
|
||||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||||
<a href="https://bit.ly/yolov5-neuralmagic">
|
<a href="https://bit.ly/yolov5-neuralmagic">
|
||||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-neuralmagic.png" width="10%" /></a>
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
|
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
|
||||||
| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
| :--------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------: |
|
||||||
| Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions | Run YOLOv5 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
| Label and export your custom datasets directly to for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save models, resume training, and interactively visualise and debug predictions | Run inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
||||||
|
|
||||||
## <div align="center">Ultralytics HUB</div>
|
## <div align="center">Ultralytics HUB</div>
|
||||||
|
|
||||||
[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv5 🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now!
|
[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train 🚀
|
||||||
|
models, and deploy to the real world in a seamless experience. Get started for **Free** now!
|
||||||
|
|
||||||
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
|
||||||
|
|
||||||
## <div align="center">Why YOLOv5</div>
|
## <div align="center">Why YOLO</div>
|
||||||
|
|
||||||
YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
|
has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
|
||||||
|
|
||||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
||||||
<details>
|
<details>
|
||||||
@ -192,10 +230,13 @@ YOLOv5 has been designed to be super easy to get started and simple to learn. We
|
|||||||
<details>
|
<details>
|
||||||
<summary>Figure Notes</summary>
|
<summary>Figure Notes</summary>
|
||||||
|
|
||||||
- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
|
- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset
|
||||||
- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
|
over various inference sizes from 256 to 1536.
|
||||||
|
- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using
|
||||||
|
a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
|
||||||
- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
|
- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
|
||||||
- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
- **Reproduce**
|
||||||
|
by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
@ -218,16 +259,28 @@ YOLOv5 has been designed to be super easy to get started and simple to learn. We
|
|||||||
<details>
|
<details>
|
||||||
<summary>Table Notes</summary>
|
<summary>Table Notes</summary>
|
||||||
|
|
||||||
- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
- All checkpoints are trained to 300 epochs with default settings. Nano and Small models
|
||||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all
|
||||||
- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
||||||
- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>
|
||||||
|
Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
||||||
|
- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/)
|
||||||
|
instance. NMS times (~1 ms/img) not included.<br>Reproduce
|
||||||
|
by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
||||||
|
- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale
|
||||||
|
augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
## <div align="center">Segmentation</div>
|
## <div align="center">Segmentation</div>
|
||||||
|
|
||||||
Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
|
Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the
|
||||||
|
fastest and most accurate in the world, beating all
|
||||||
|
current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them
|
||||||
|
super simple to train, validate and deploy. See full details in
|
||||||
|
our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit
|
||||||
|
our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for
|
||||||
|
quickstart tutorials.
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>Segmentation Checkpoints</summary>
|
<summary>Segmentation Checkpoints</summary>
|
||||||
@ -237,7 +290,9 @@ Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.
|
|||||||
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
|
We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models
|
||||||
|
to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on
|
||||||
|
Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
|
||||||
|
|
||||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||||
| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
|
| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
|
||||||
@ -247,10 +302,15 @@ We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640
|
|||||||
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
|
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
|
||||||
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
||||||
|
|
||||||
- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
|
- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640
|
||||||
- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
|
||||||
- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce
|
||||||
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
||||||
|
- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100
|
||||||
|
High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce
|
||||||
|
by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
||||||
|
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce
|
||||||
|
by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
@ -259,7 +319,9 @@ We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640
|
|||||||
|
|
||||||
### Train
|
### Train
|
||||||
|
|
||||||
YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.
|
YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml`
|
||||||
|
argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and
|
||||||
|
then `python train.py --data coco.yaml`.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Single-GPU
|
# Single-GPU
|
||||||
@ -307,14 +369,21 @@ python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --devi
|
|||||||
|
|
||||||
## <div align="center">Classification</div>
|
## <div align="center">Classification</div>
|
||||||
|
|
||||||
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.
|
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training,
|
||||||
|
validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2)
|
||||||
|
and visit
|
||||||
|
our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb)
|
||||||
|
for quickstart tutorials.
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>Classification Checkpoints</summary>
|
<summary>Classification Checkpoints</summary>
|
||||||
|
|
||||||
<br>
|
<br>
|
||||||
|
|
||||||
We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
|
We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and
|
||||||
|
EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32
|
||||||
|
for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on
|
||||||
|
Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
|
||||||
|
|
||||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
|
||||||
| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
|
| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
|
||||||
@ -337,10 +406,14 @@ We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4x
|
|||||||
<details>
|
<details>
|
||||||
<summary>Table Notes (click to expand)</summary>
|
<summary>Table Notes (click to expand)</summary>
|
||||||
|
|
||||||
- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
|
- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224
|
||||||
- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
|
and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
|
||||||
- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
|
- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php)
|
||||||
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
|
dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
|
||||||
|
- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100
|
||||||
|
High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
|
||||||
|
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce
|
||||||
|
by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
</details>
|
</details>
|
||||||
@ -350,7 +423,8 @@ We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4x
|
|||||||
|
|
||||||
### Train
|
### Train
|
||||||
|
|
||||||
YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
|
YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof,
|
||||||
|
and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Single-GPU
|
# Single-GPU
|
||||||
@ -407,7 +481,7 @@ Get started in seconds with our verified environments. Click each icon below for
|
|||||||
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
||||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
|
||||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||||
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
<a href="https://hub.docker.com/r/ultralytics/yolov3">
|
||||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
|
||||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||||
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
||||||
@ -419,22 +493,29 @@ Get started in seconds with our verified environments. Click each icon below for
|
|||||||
|
|
||||||
## <div align="center">Contribute</div>
|
## <div align="center">Contribute</div>
|
||||||
|
|
||||||
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
|
We love your input! We want to make contributing to as easy and transparent as possible. Please see
|
||||||
|
our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out
|
||||||
|
the [ Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us
|
||||||
|
feedback on your experiences. Thank you to all our contributors!
|
||||||
|
|
||||||
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
||||||
|
|
||||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
|
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
|
||||||
|
|
||||||
## <div align="center">License</div>
|
## <div align="center">License</div>
|
||||||
|
|
||||||
YOLOv5 is available under two different licenses:
|
is available under two different licenses:
|
||||||
|
|
||||||
- **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details.
|
- **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details.
|
||||||
- **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license).
|
- **Enterprise License**: Provides greater flexibility for commercial product development without the open-source
|
||||||
|
requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and
|
||||||
|
applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license).
|
||||||
|
|
||||||
## <div align="center">Contact</div>
|
## <div align="center">Contact</div>
|
||||||
|
|
||||||
For YOLOv5 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues) or the [Ultralytics Community Forum](https://community.ultralytics.com/).
|
For bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues) or
|
||||||
|
the [Ultralytics Community Forum](https://community.ultralytics.com/).
|
||||||
|
|
||||||
<br>
|
<br>
|
||||||
<div align="center">
|
<div align="center">
|
||||||
@ -461,4 +542,3 @@ For YOLOv5 bug reports and feature requests please visit [GitHub Issues](https:/
|
|||||||
</div>
|
</div>
|
||||||
|
|
||||||
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
||||||
|
|
||||||
|
|||||||
532
README.zh-CN.md
Normal file
532
README.zh-CN.md
Normal file
@ -0,0 +1,532 @@
|
|||||||
|
<div align="center">
|
||||||
|
<p>
|
||||||
|
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||||
|
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
[英文](README.md)|[简体中文](README.zh-CN.md)<br>
|
||||||
|
|
||||||
|
<div>
|
||||||
|
<a href="https://github.com/ultralytics/yolov3/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov3/actions/workflows/ci-testing.yml/badge.svg" alt=" CI"></a>
|
||||||
|
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt=" Citation"></a>
|
||||||
|
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
|
||||||
|
<br>
|
||||||
|
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
|
||||||
|
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||||
|
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||||
|
</div>
|
||||||
|
<br>
|
||||||
|
|
||||||
|
🚀 是世界上最受欢迎的视觉 AI,代表<a href="https://ultralytics.com"> Ultralytics </a>对未来视觉 AI
|
||||||
|
方法的开源研究,结合在数千小时的研究和开发中积累的经验教训和最佳实践。
|
||||||
|
|
||||||
|
如果要申请企业许可证,请填写表格<a href="https://ultralytics.com/license">Ultralytics 许可</a>.
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||||
|
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||||
|
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||||
|
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||||
|
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||||
|
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||||
|
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
## <div align="center">YOLOv8 🚀 NEW</div>
|
||||||
|
|
||||||
|
We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model
|
||||||
|
released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**.
|
||||||
|
YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of
|
||||||
|
object detection, image segmentation and image classification tasks.
|
||||||
|
|
||||||
|
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
|
||||||
|
|
||||||
|
```commandline
|
||||||
|
pip install ultralytics
|
||||||
|
```
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<a href="https://ultralytics.com/yolov8" target="_blank">
|
||||||
|
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
## <div align="center">文档</div>
|
||||||
|
|
||||||
|
有关训练、测试和部署的完整文档见[YOLOv5 文档](https://docs.ultralytics.com)。请参阅下面的快速入门示例。
|
||||||
|
|
||||||
|
<details open>
|
||||||
|
<summary>安装</summary>
|
||||||
|
|
||||||
|
克隆 repo,并要求在 [**Python>=3.7.0**](https://www.python.org/)
|
||||||
|
环境中安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) ,且要求 [**PyTorch>
|
||||||
|
=1.7**](https://pytorch.org/get-started/locally/) 。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/ultralytics/yolov3 # clone
|
||||||
|
cd yolov3
|
||||||
|
pip install -r requirements.txt # install
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>推理</summary>
|
||||||
|
|
||||||
|
使用 YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
|
||||||
|
推理。最新 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 将自动的从
|
||||||
|
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
|
||||||
|
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# Model
|
||||||
|
model = torch.hub.load(
|
||||||
|
"ultralytics/yolov3", "yolov3"
|
||||||
|
) # or yolov3-spp, yolov3-tiny, custom
|
||||||
|
|
||||||
|
# Images
|
||||||
|
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
results = model(img)
|
||||||
|
|
||||||
|
# Results
|
||||||
|
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>使用 detect.py 推理</summary>
|
||||||
|
|
||||||
|
`detect.py` 在各种来源上运行推理, [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从
|
||||||
|
最新的YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载,并将结果保存到 `runs/detect` 。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python detect.py --weights yolov5s.pt --source 0 # webcam
|
||||||
|
img.jpg # image
|
||||||
|
vid.mp4 # video
|
||||||
|
screen # screenshot
|
||||||
|
path/ # directory
|
||||||
|
list.txt # list of images
|
||||||
|
list.streams # list of streams
|
||||||
|
'path/*.jpg' # glob
|
||||||
|
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||||
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>训练</summary>
|
||||||
|
|
||||||
|
下面的命令重现 YOLOv5 在 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) 数据集上的结果。
|
||||||
|
最新的 [模型](https://github.com/ultralytics/yolov5/tree/master/models)
|
||||||
|
和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data)
|
||||||
|
将自动的从 YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
|
||||||
|
YOLOv5n/s/m/l/x 在 V100 GPU 的训练时间为 1/2/4/6/8 天( [多GPU](https://github.com/ultralytics/yolov5/issues/475)
|
||||||
|
训练速度更快)。
|
||||||
|
尽可能使用更大的 `--batch-size` ,或通过 `--batch-size -1` 实现
|
||||||
|
YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092) 。下方显示的 batchsize 适用于 V100-16GB。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
|
||||||
|
yolov5s 64
|
||||||
|
yolov5m 40
|
||||||
|
yolov5l 24
|
||||||
|
yolov5x 16
|
||||||
|
```
|
||||||
|
|
||||||
|
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details open>
|
||||||
|
<summary>教程</summary>
|
||||||
|
|
||||||
|
- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)🚀 推荐
|
||||||
|
- [获得最佳训练结果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)☘️ 推荐
|
||||||
|
- [多 GPU 训练](https://github.com/ultralytics/yolov5/issues/475)
|
||||||
|
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)🌟 新
|
||||||
|
- [TFLite、ONNX、CoreML、TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251)🚀
|
||||||
|
- [NVIDIA Jetson Nano 部署](https://github.com/ultralytics/yolov5/issues/9627)🌟 新
|
||||||
|
- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
||||||
|
- [模型集成](https://github.com/ultralytics/yolov5/issues/318)
|
||||||
|
- [模型修剪/稀疏度](https://github.com/ultralytics/yolov5/issues/304)
|
||||||
|
- [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
|
||||||
|
- [使用冻结层进行迁移学习](https://github.com/ultralytics/yolov5/issues/1314)
|
||||||
|
- [架构总结](https://github.com/ultralytics/yolov5/issues/6998)🌟 新
|
||||||
|
- [用于数据集、标签和主动学习的 Roboflow](https://github.com/ultralytics/yolov5/issues/4975)🌟 新
|
||||||
|
- [ClearML 记录](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml)🌟 新
|
||||||
|
- [Deci 平台](https://github.com/ultralytics/yolov5/wiki/Deci-Platform)🌟 新
|
||||||
|
- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet)🌟 新
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## <div align="center">模块集成</div>
|
||||||
|
|
||||||
|
<br>
|
||||||
|
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||||
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
|
||||||
|
<br>
|
||||||
|
<br>
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<a href="https://roboflow.com/?ref=ultralytics">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||||
|
<a href="https://cutt.ly/yolov5-readme-clearml">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||||
|
<a href="https://bit.ly/yolov5-readme-comet">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||||
|
<a href="https://bit.ly/yolov5-neuralmagic">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
| Roboflow | ClearML ⭐ 新 | Comet ⭐ 新 | Neural Magic ⭐ 新 |
|
||||||
|
| :--------------------------------------------------------------------------------: | :-------------------------------------------------------------------------: | :-------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------: |
|
||||||
|
| 将您的自定义数据集进行标注并直接导出到 YOLOv5 以进行训练 [Roboflow](https://roboflow.com/?ref=ultralytics) | 自动跟踪、可视化甚至远程训练 YOLOv5 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!) | 永远免费,[Comet](https://bit.ly/yolov5-readme-comet)可让您保存 YOLOv5 模型、恢复训练以及交互式可视化和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic),运行 YOLOv5 推理的速度最高可提高6倍 |
|
||||||
|
|
||||||
|
## <div align="center">Ultralytics HUB</div>
|
||||||
|
|
||||||
|
[Ultralytics HUB](https://bit.ly/ultralytics_hub) 是我们的⭐**新的**用于可视化数据集、训练 YOLOv5 🚀
|
||||||
|
模型并以无缝体验部署到现实世界的无代码解决方案。现在开始 **免费** 使用他!
|
||||||
|
|
||||||
|
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||||
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
|
||||||
|
|
||||||
|
## <div align="center">为什么选择 YOLOv5</div>
|
||||||
|
|
||||||
|
YOLOv5 超级容易上手,简单易学。我们优先考虑现实世界的结果。
|
||||||
|
|
||||||
|
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
||||||
|
<details>
|
||||||
|
<summary>YOLOv5-P5 640 图</summary>
|
||||||
|
|
||||||
|
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
||||||
|
</details>
|
||||||
|
<details>
|
||||||
|
<summary>图表笔记</summary>
|
||||||
|
|
||||||
|
- **COCO AP val** 表示 mAP@0.5:0.95 指标,在 [COCO val2017](http://cocodataset.org) 数据集的 5000 张图像上测得, 图像包含
|
||||||
|
256 到 1536 各种推理大小。
|
||||||
|
- **显卡推理速度** 为在 [COCO val2017](http://cocodataset.org)
|
||||||
|
数据集上的平均推理时间,使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例,batchsize 为 32 。
|
||||||
|
- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) , batchsize 为32。
|
||||||
|
- **复现命令**
|
||||||
|
为 `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 预训练模型
|
||||||
|
|
||||||
|
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | 推理速度<br><sup>CPU b1<br>(ms) | 推理速度<br><sup>V100 b1<br>(ms) | 速度<br><sup>V100 b32<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||||
|
| ---------------------------------------------------------------------------------------------- | --------------- | -------------------- | ----------------- | --------------------------- | ---------------------------- | --------------------------- | --------------- | ---------------------- |
|
||||||
|
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
|
||||||
|
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
|
||||||
|
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
|
||||||
|
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
|
||||||
|
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
|
||||||
|
| | | | | | | | | |
|
||||||
|
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
|
||||||
|
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
|
||||||
|
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
|
||||||
|
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
|
||||||
|
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+[TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>笔记</summary>
|
||||||
|
|
||||||
|
- 所有模型都使用默认配置,训练 300
|
||||||
|
epochs。n和s模型使用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml)
|
||||||
|
,其他模型都使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml) 。
|
||||||
|
- \*\*mAP<sup>val</sup>\*\*在单模型单尺度上计算,数据集使用 [COCO val2017](http://cocodataset.org) 。<br>
|
||||||
|
复现命令 `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
||||||
|
- **推理速度**在 COCO val
|
||||||
|
图像总体时间上进行平均得到,测试环境使用[AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/)实例。 NMS 时间 (
|
||||||
|
大约 1 ms/img) 不包括在内。<br>复现命令 `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
||||||
|
- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和尺度变换。<br>
|
||||||
|
复现命令 `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## <div align="center">实例分割模型 ⭐ 新</div>
|
||||||
|
|
||||||
|
我们新的 YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0)
|
||||||
|
实例分割模型是世界上最快和最准确的模型,击败所有当前 [SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)
|
||||||
|
。我们使它非常易于训练、验证和部署。更多细节请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v7.0)
|
||||||
|
或访问我们的 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) 以快速入门。
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>实例分割模型列表</summary>
|
||||||
|
|
||||||
|
<br>
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||||
|
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
我们使用 A100 GPU 在 COCO 上以 640 图像大小训练了 300 epochs 得到 YOLOv5 分割模型。我们将所有模型导出到 ONNX FP32 以进行
|
||||||
|
CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于再现,我们在
|
||||||
|
Google [Colab Pro](https://colab.research.google.com/signup) 上进行了所有速度测试。
|
||||||
|
|
||||||
|
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 训练时长<br><sup>300 epochs<br>A100 GPU(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TRT A100<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||||
|
| ------------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------- | --------------------------------------- | ----------------------------- | ----------------------------- | --------------- | ---------------------- |
|
||||||
|
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
|
||||||
|
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
|
||||||
|
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
|
||||||
|
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
|
||||||
|
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
||||||
|
|
||||||
|
- 所有模型使用 SGD 优化器训练, 都使用 `lr0=0.01` 和 `weight_decay=5e-5` 参数, 图像大小为 640 。<br>训练 log
|
||||||
|
可以查看 https://wandb.ai/glenn-jocher/YOLOv5_v70_official
|
||||||
|
- **准确性**结果都在 COCO 数据集上,使用单模型单尺度测试得到。<br>
|
||||||
|
复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
||||||
|
- **推理速度**是使用 100 张图像推理时间进行平均得到,测试环境使用 [Colab Pro](https://colab.research.google.com/signup) 上
|
||||||
|
A100 高 RAM 实例。结果仅表示推理速度(NMS 每张图像增加约 1 毫秒)。<br>
|
||||||
|
复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
||||||
|
- **模型转换**到 FP32 的 ONNX 和 FP16 的 TensorRT 脚本为 `export.py`.<br>
|
||||||
|
运行命令 `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>分割模型使用示例 <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||||
|
|
||||||
|
### 训练
|
||||||
|
|
||||||
|
YOLOv5分割训练支持自动下载 COCO128-seg 分割数据集,用户仅需在启动指令中包含 `--data coco128-seg.yaml` 参数。
|
||||||
|
若要手动下载,使用命令 `bash data/scripts/get_coco.sh --train --val --segments`,
|
||||||
|
在下载完毕后,使用命令 `python train.py --data coco.yaml` 开启训练。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# 单 GPU
|
||||||
|
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
|
||||||
|
|
||||||
|
# 多 GPU, DDP 模式
|
||||||
|
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
||||||
|
```
|
||||||
|
|
||||||
|
### 验证
|
||||||
|
|
||||||
|
在 COCO 数据集上验证 YOLOv5s-seg mask mAP:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash data/scripts/get_coco.sh --val --segments # 下载 COCO val segments 数据集 (780MB, 5000 images)
|
||||||
|
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # 验证
|
||||||
|
```
|
||||||
|
|
||||||
|
### 预测
|
||||||
|
|
||||||
|
使用预训练的 YOLOv5m-seg.pt 来预测 bus.jpg:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
model = torch.hub.load(
|
||||||
|
"ultralytics/yolov5", "custom", "yolov5m-seg.pt"
|
||||||
|
) # 从load from PyTorch Hub 加载模型 (WARNING: 推理暂未支持)
|
||||||
|
```
|
||||||
|
|
||||||
|
|  |  |
|
||||||
|
| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||||
|
|
||||||
|
### 模型导出
|
||||||
|
|
||||||
|
将 YOLOv5s-seg 模型导出到 ONNX 和 TensorRT:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## <div align="center">分类网络 ⭐ 新</div>
|
||||||
|
|
||||||
|
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases)
|
||||||
|
带来对分类模型训练、验证和部署的支持!详情请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v6.2)
|
||||||
|
或访问我们的 [YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb)
|
||||||
|
以快速入门。
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>分类网络模型</summary>
|
||||||
|
|
||||||
|
<br>
|
||||||
|
|
||||||
|
我们使用 4xA100 实例在 ImageNet 上训练了 90 个 epochs 得到 YOLOv5-cls 分类模型,我们训练了 ResNet 和 EfficientNet
|
||||||
|
模型以及相同的默认训练设置以进行比较。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行
|
||||||
|
GPU 速度测试。为了便于重现,我们在 Google 上进行了所有速度测试 [Colab Pro](https://colab.research.google.com/signup) 。
|
||||||
|
|
||||||
|
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 训练时长<br><sup>90 epochs<br>4xA100(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TensorRT V100<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||||
|
| -------------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | ------------------------------------ | ----------------------------- | ---------------------------------- | -------------- | ---------------------- |
|
||||||
|
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
|
||||||
|
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
|
||||||
|
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
|
||||||
|
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
|
||||||
|
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
|
||||||
|
| | | | | | | | | |
|
||||||
|
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
|
||||||
|
| [Resnetzch](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
|
||||||
|
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
|
||||||
|
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
|
||||||
|
| | | | | | | | | |
|
||||||
|
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
|
||||||
|
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
|
||||||
|
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
|
||||||
|
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Table Notes (点击以展开)</summary>
|
||||||
|
|
||||||
|
- 所有模型都使用 SGD 优化器训练 90 个 epochs,都使用 `lr0=0.001` 和 `weight_decay=5e-5` 参数, 图像大小为 224
|
||||||
|
,且都使用默认设置。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
|
||||||
|
- **准确性**都在单模型单尺度上计算,数据集使用 [ImageNet-1k](https://www.image-net.org/index.php) 。<br>
|
||||||
|
复现命令 `python classify/val.py --data ../datasets/imagenet --img 224`
|
||||||
|
- **推理速度**是使用 100 个推理图像进行平均得到,测试环境使用谷歌 [Colab Pro](https://colab.research.google.com/signup)
|
||||||
|
V100 高 RAM 实例。<br>复现命令 `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
|
||||||
|
- **模型导出**到 FP32 的 ONNX 和 FP16 的 TensorRT 使用 `export.py` 。<br>
|
||||||
|
复现命令 `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
|
||||||
|
</details>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>分类训练示例 <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||||
|
|
||||||
|
### 训练
|
||||||
|
|
||||||
|
YOLOv5 分类训练支持自动下载 MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet
|
||||||
|
数据集,命令中使用 `--data` 即可。 MNIST 示例 `--data mnist` 。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# 单 GPU
|
||||||
|
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
|
||||||
|
|
||||||
|
# 多 GPU, DDP 模式
|
||||||
|
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
||||||
|
```
|
||||||
|
|
||||||
|
### 验证
|
||||||
|
|
||||||
|
在 ImageNet-1k 数据集上验证 YOLOv5m-cls 的准确性:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
||||||
|
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
|
||||||
|
```
|
||||||
|
|
||||||
|
### 预测
|
||||||
|
|
||||||
|
使用预训练的 YOLOv5s-cls.pt 来预测 bus.jpg:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
model = torch.hub.load(
|
||||||
|
"ultralytics/yolov5", "custom", "yolov5s-cls.pt"
|
||||||
|
) # load from PyTorch Hub
|
||||||
|
```
|
||||||
|
|
||||||
|
### 模型导出
|
||||||
|
|
||||||
|
将一组经过训练的 YOLOv5s-cls、ResNet 和 EfficientNet 模型导出到 ONNX 和 TensorRT:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## <div align="center">环境</div>
|
||||||
|
|
||||||
|
使用下面我们经过验证的环境,在几秒钟内开始使用 YOLOv5 。单击下面的图标了解详细信息。
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<a href="https://bit.ly/yolov5-paperspace-notebook">
|
||||||
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||||
|
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
||||||
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||||
|
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
||||||
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||||
|
<a href="https://hub.docker.com/r/ultralytics/yolov3">
|
||||||
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||||
|
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
||||||
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||||
|
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
|
||||||
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
## <div align="center">贡献</div>
|
||||||
|
|
||||||
|
我们喜欢您的意见或建议!我们希望尽可能简单和透明地为 YOLOv5 做出贡献。请看我们的 [投稿指南](CONTRIBUTING.md)
|
||||||
|
,并填写 [YOLOv5调查](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)
|
||||||
|
向我们发送您的体验反馈。感谢我们所有的贡献者!
|
||||||
|
|
||||||
|
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
||||||
|
|
||||||
|
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
|
||||||
|
|
||||||
|
## <div align="center">License</div>
|
||||||
|
|
||||||
|
YOLOv5 在两种不同的 License 下可用:
|
||||||
|
|
||||||
|
- **GPL-3.0 License**: 查看 [License](https://github.com/ultralytics/yolov5/blob/master/LICENSE) 文件的详细信息。
|
||||||
|
- **企业License**:在没有 GPL-3.0 开源要求的情况下为商业产品开发提供更大的灵活性。典型用例是将 Ultralytics 软件和 AI
|
||||||
|
模型嵌入到商业产品和应用程序中。在以下位置申请企业许可证 [Ultralytics 许可](https://ultralytics.com/license) 。
|
||||||
|
|
||||||
|
## <div align="center">联系我们</div>
|
||||||
|
|
||||||
|
请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)
|
||||||
|
或 [Ultralytics Community Forum](https://community.ultralytis.com) 以报告 YOLOv5 错误和请求功能。
|
||||||
|
|
||||||
|
<br>
|
||||||
|
<div align="center">
|
||||||
|
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||||
|
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||||
|
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||||
|
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="3%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||||
|
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||||
|
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="3%" alt="" /></a>
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||||
|
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||||
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
||||||
169
benchmarks.py
Normal file
169
benchmarks.py
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Run benchmarks on all supported export formats
|
||||||
|
|
||||||
|
Format | `export.py --include` | Model
|
||||||
|
--- | --- | ---
|
||||||
|
PyTorch | - | yolov5s.pt
|
||||||
|
TorchScript | `torchscript` | yolov5s.torchscript
|
||||||
|
ONNX | `onnx` | yolov5s.onnx
|
||||||
|
OpenVINO | `openvino` | yolov5s_openvino_model/
|
||||||
|
TensorRT | `engine` | yolov5s.engine
|
||||||
|
CoreML | `coreml` | yolov5s.mlmodel
|
||||||
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
||||||
|
TensorFlow GraphDef | `pb` | yolov5s.pb
|
||||||
|
TensorFlow Lite | `tflite` | yolov5s.tflite
|
||||||
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
||||||
|
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
||||||
|
|
||||||
|
Requirements:
|
||||||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
||||||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
||||||
|
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import platform
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[0] # root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
||||||
|
|
||||||
|
import export
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from models.yolo import SegmentationModel
|
||||||
|
from segment.val import run as val_seg
|
||||||
|
from utils import notebook_init
|
||||||
|
from utils.general import LOGGER, check_yaml, file_size, print_args
|
||||||
|
from utils.torch_utils import select_device
|
||||||
|
from val import run as val_det
|
||||||
|
|
||||||
|
|
||||||
|
def run(
|
||||||
|
weights=ROOT / 'yolov5s.pt', # weights path
|
||||||
|
imgsz=640, # inference size (pixels)
|
||||||
|
batch_size=1, # batch size
|
||||||
|
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
|
half=False, # use FP16 half-precision inference
|
||||||
|
test=False, # test exports only
|
||||||
|
pt_only=False, # test PyTorch only
|
||||||
|
hard_fail=False, # throw error on benchmark failure
|
||||||
|
):
|
||||||
|
y, t = [], time.time()
|
||||||
|
device = select_device(device)
|
||||||
|
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
|
||||||
|
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
||||||
|
try:
|
||||||
|
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
||||||
|
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
||||||
|
if 'cpu' in device.type:
|
||||||
|
assert cpu, 'inference not supported on CPU'
|
||||||
|
if 'cuda' in device.type:
|
||||||
|
assert gpu, 'inference not supported on GPU'
|
||||||
|
|
||||||
|
# Export
|
||||||
|
if f == '-':
|
||||||
|
w = weights # PyTorch format
|
||||||
|
else:
|
||||||
|
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
||||||
|
assert suffix in str(w), 'export failed'
|
||||||
|
|
||||||
|
# Validate
|
||||||
|
if model_type == SegmentationModel:
|
||||||
|
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
||||||
|
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
|
||||||
|
else: # DetectionModel:
|
||||||
|
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
||||||
|
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
|
||||||
|
speed = result[2][1] # times (preprocess, inference, postprocess)
|
||||||
|
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
|
||||||
|
except Exception as e:
|
||||||
|
if hard_fail:
|
||||||
|
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
|
||||||
|
LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
|
||||||
|
y.append([name, None, None, None]) # mAP, t_inference
|
||||||
|
if pt_only and i == 0:
|
||||||
|
break # break after PyTorch
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
LOGGER.info('\n')
|
||||||
|
parse_opt()
|
||||||
|
notebook_init() # print system info
|
||||||
|
c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
|
||||||
|
py = pd.DataFrame(y, columns=c)
|
||||||
|
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
||||||
|
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
||||||
|
if hard_fail and isinstance(hard_fail, str):
|
||||||
|
metrics = py['mAP50-95'].array # values to compare to floor
|
||||||
|
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
||||||
|
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
|
||||||
|
return py
|
||||||
|
|
||||||
|
|
||||||
|
def test(
|
||||||
|
weights=ROOT / 'yolov5s.pt', # weights path
|
||||||
|
imgsz=640, # inference size (pixels)
|
||||||
|
batch_size=1, # batch size
|
||||||
|
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
|
half=False, # use FP16 half-precision inference
|
||||||
|
test=False, # test exports only
|
||||||
|
pt_only=False, # test PyTorch only
|
||||||
|
hard_fail=False, # throw error on benchmark failure
|
||||||
|
):
|
||||||
|
y, t = [], time.time()
|
||||||
|
device = select_device(device)
|
||||||
|
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
||||||
|
try:
|
||||||
|
w = weights if f == '-' else \
|
||||||
|
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
|
||||||
|
assert suffix in str(w), 'export failed'
|
||||||
|
y.append([name, True])
|
||||||
|
except Exception:
|
||||||
|
y.append([name, False]) # mAP, t_inference
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
LOGGER.info('\n')
|
||||||
|
parse_opt()
|
||||||
|
notebook_init() # print system info
|
||||||
|
py = pd.DataFrame(y, columns=['Format', 'Export'])
|
||||||
|
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
|
||||||
|
LOGGER.info(str(py))
|
||||||
|
return py
|
||||||
|
|
||||||
|
|
||||||
|
def parse_opt():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
||||||
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||||
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
||||||
|
parser.add_argument('--test', action='store_true', help='test exports only')
|
||||||
|
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
|
||||||
|
parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.data = check_yaml(opt.data) # check YAML
|
||||||
|
print_args(vars(opt))
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
def main(opt):
|
||||||
|
test(**vars(opt)) if opt.test else run(**vars(opt))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
opt = parse_opt()
|
||||||
|
main(opt)
|
||||||
226
classify/predict.py
Normal file
226
classify/predict.py
Normal file
@ -0,0 +1,226 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Run classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
||||||
|
|
||||||
|
Usage - sources:
|
||||||
|
$ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
|
||||||
|
img.jpg # image
|
||||||
|
vid.mp4 # video
|
||||||
|
screen # screenshot
|
||||||
|
path/ # directory
|
||||||
|
list.txt # list of images
|
||||||
|
list.streams # list of streams
|
||||||
|
'path/*.jpg' # glob
|
||||||
|
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||||
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||||
|
|
||||||
|
Usage - formats:
|
||||||
|
$ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
|
||||||
|
yolov5s-cls.torchscript # TorchScript
|
||||||
|
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||||
|
yolov5s-cls_openvino_model # OpenVINO
|
||||||
|
yolov5s-cls.engine # TensorRT
|
||||||
|
yolov5s-cls.mlmodel # CoreML (macOS-only)
|
||||||
|
yolov5s-cls_saved_model # TensorFlow SavedModel
|
||||||
|
yolov5s-cls.pb # TensorFlow GraphDef
|
||||||
|
yolov5s-cls.tflite # TensorFlow Lite
|
||||||
|
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
|
||||||
|
yolov5s-cls_paddle_model # PaddlePaddle
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[1] # root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
|
from models.common import DetectMultiBackend
|
||||||
|
from utils.augmentations import classify_transforms
|
||||||
|
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
||||||
|
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
||||||
|
increment_path, print_args, strip_optimizer)
|
||||||
|
from utils.plots import Annotator
|
||||||
|
from utils.torch_utils import select_device, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
|
@smart_inference_mode()
|
||||||
|
def run(
|
||||||
|
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
|
||||||
|
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
||||||
|
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||||
|
imgsz=(224, 224), # inference size (height, width)
|
||||||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
|
view_img=False, # show results
|
||||||
|
save_txt=False, # save results to *.txt
|
||||||
|
nosave=False, # do not save images/videos
|
||||||
|
augment=False, # augmented inference
|
||||||
|
visualize=False, # visualize features
|
||||||
|
update=False, # update all models
|
||||||
|
project=ROOT / 'runs/predict-cls', # save results to project/name
|
||||||
|
name='exp', # save results to project/name
|
||||||
|
exist_ok=False, # existing project/name ok, do not increment
|
||||||
|
half=False, # use FP16 half-precision inference
|
||||||
|
dnn=False, # use OpenCV DNN for ONNX inference
|
||||||
|
vid_stride=1, # video frame-rate stride
|
||||||
|
):
|
||||||
|
source = str(source)
|
||||||
|
save_img = not nosave and not source.endswith('.txt') # save inference images
|
||||||
|
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
||||||
|
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
||||||
|
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
|
||||||
|
screenshot = source.lower().startswith('screen')
|
||||||
|
if is_url and is_file:
|
||||||
|
source = check_file(source) # download
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||||
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
device = select_device(device)
|
||||||
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||||
|
stride, names, pt = model.stride, model.names, model.pt
|
||||||
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
|
||||||
|
# Dataloader
|
||||||
|
bs = 1 # batch_size
|
||||||
|
if webcam:
|
||||||
|
view_img = check_imshow(warn=True)
|
||||||
|
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
||||||
|
bs = len(dataset)
|
||||||
|
elif screenshot:
|
||||||
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||||
|
else:
|
||||||
|
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
||||||
|
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||||
|
|
||||||
|
# Run inference
|
||||||
|
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
|
||||||
|
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
||||||
|
for path, im, im0s, vid_cap, s in dataset:
|
||||||
|
with dt[0]:
|
||||||
|
im = torch.Tensor(im).to(model.device)
|
||||||
|
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||||
|
if len(im.shape) == 3:
|
||||||
|
im = im[None] # expand for batch dim
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
with dt[1]:
|
||||||
|
results = model(im)
|
||||||
|
|
||||||
|
# Post-process
|
||||||
|
with dt[2]:
|
||||||
|
pred = F.softmax(results, dim=1) # probabilities
|
||||||
|
|
||||||
|
# Process predictions
|
||||||
|
for i, prob in enumerate(pred): # per image
|
||||||
|
seen += 1
|
||||||
|
if webcam: # batch_size >= 1
|
||||||
|
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
||||||
|
s += f'{i}: '
|
||||||
|
else:
|
||||||
|
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
||||||
|
|
||||||
|
p = Path(p) # to Path
|
||||||
|
save_path = str(save_dir / p.name) # im.jpg
|
||||||
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
||||||
|
|
||||||
|
s += '%gx%g ' % im.shape[2:] # print string
|
||||||
|
annotator = Annotator(im0, example=str(names), pil=True)
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||||
|
s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
||||||
|
|
||||||
|
# Write results
|
||||||
|
text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
|
||||||
|
if save_img or view_img: # Add bbox to image
|
||||||
|
annotator.text((32, 32), text, txt_color=(255, 255, 255))
|
||||||
|
if save_txt: # Write to file
|
||||||
|
with open(f'{txt_path}.txt', 'a') as f:
|
||||||
|
f.write(text + '\n')
|
||||||
|
|
||||||
|
# Stream results
|
||||||
|
im0 = annotator.result()
|
||||||
|
if view_img:
|
||||||
|
if platform.system() == 'Linux' and p not in windows:
|
||||||
|
windows.append(p)
|
||||||
|
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||||
|
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||||
|
cv2.imshow(str(p), im0)
|
||||||
|
cv2.waitKey(1) # 1 millisecond
|
||||||
|
|
||||||
|
# Save results (image with detections)
|
||||||
|
if save_img:
|
||||||
|
if dataset.mode == 'image':
|
||||||
|
cv2.imwrite(save_path, im0)
|
||||||
|
else: # 'video' or 'stream'
|
||||||
|
if vid_path[i] != save_path: # new video
|
||||||
|
vid_path[i] = save_path
|
||||||
|
if isinstance(vid_writer[i], cv2.VideoWriter):
|
||||||
|
vid_writer[i].release() # release previous video writer
|
||||||
|
if vid_cap: # video
|
||||||
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||||||
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
else: # stream
|
||||||
|
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||||
|
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
||||||
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||||
|
vid_writer[i].write(im0)
|
||||||
|
|
||||||
|
# Print time (inference-only)
|
||||||
|
LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
||||||
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
||||||
|
if save_txt or save_img:
|
||||||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||||
|
if update:
|
||||||
|
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_opt():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
|
||||||
|
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
||||||
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
||||||
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--view-img', action='store_true', help='show results')
|
||||||
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||||
|
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
||||||
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||||
|
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
||||||
|
parser.add_argument('--update', action='store_true', help='update all models')
|
||||||
|
parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
||||||
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
||||||
|
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||||
|
print_args(vars(opt))
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
def main(opt):
|
||||||
|
check_requirements(exclude=('tensorboard', 'thop'))
|
||||||
|
run(**vars(opt))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
opt = parse_opt()
|
||||||
|
main(opt)
|
||||||
333
classify/train.py
Normal file
333
classify/train.py
Normal file
@ -0,0 +1,333 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Train a YOLOv5 classifier model on a classification dataset
|
||||||
|
|
||||||
|
Usage - Single-GPU training:
|
||||||
|
$ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
|
||||||
|
|
||||||
|
Usage - Multi-GPU DDP training:
|
||||||
|
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
||||||
|
|
||||||
|
Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
|
||||||
|
YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
|
||||||
|
Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
from copy import deepcopy
|
||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.hub as hub
|
||||||
|
import torch.optim.lr_scheduler as lr_scheduler
|
||||||
|
import torchvision
|
||||||
|
from torch.cuda import amp
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
|
from classify import val as validate
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from models.yolo import ClassificationModel, DetectionModel
|
||||||
|
from utils.dataloaders import create_classification_dataloader
|
||||||
|
from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_info, check_git_status,
|
||||||
|
check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save)
|
||||||
|
from utils.loggers import GenericLogger
|
||||||
|
from utils.plots import imshow_cls
|
||||||
|
from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP,
|
||||||
|
smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
|
||||||
|
|
||||||
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||||
|
RANK = int(os.getenv('RANK', -1))
|
||||||
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
||||||
|
GIT_INFO = check_git_info()
|
||||||
|
|
||||||
|
|
||||||
|
def train(opt, device):
|
||||||
|
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
||||||
|
save_dir, data, bs, epochs, nw, imgsz, pretrained = \
|
||||||
|
opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
|
||||||
|
opt.imgsz, str(opt.pretrained).lower() == 'true'
|
||||||
|
cuda = device.type != 'cpu'
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
wdir = save_dir / 'weights'
|
||||||
|
wdir.mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
last, best = wdir / 'last.pt', wdir / 'best.pt'
|
||||||
|
|
||||||
|
# Save run settings
|
||||||
|
yaml_save(save_dir / 'opt.yaml', vars(opt))
|
||||||
|
|
||||||
|
# Logger
|
||||||
|
logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
|
||||||
|
|
||||||
|
# Download Dataset
|
||||||
|
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
|
||||||
|
data_dir = data if data.is_dir() else (DATASETS_DIR / data)
|
||||||
|
if not data_dir.is_dir():
|
||||||
|
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
|
||||||
|
t = time.time()
|
||||||
|
if str(data) == 'imagenet':
|
||||||
|
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
|
||||||
|
else:
|
||||||
|
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
|
||||||
|
download(url, dir=data_dir.parent)
|
||||||
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
|
||||||
|
LOGGER.info(s)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
|
||||||
|
trainloader = create_classification_dataloader(path=data_dir / 'train',
|
||||||
|
imgsz=imgsz,
|
||||||
|
batch_size=bs // WORLD_SIZE,
|
||||||
|
augment=True,
|
||||||
|
cache=opt.cache,
|
||||||
|
rank=LOCAL_RANK,
|
||||||
|
workers=nw)
|
||||||
|
|
||||||
|
test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
testloader = create_classification_dataloader(path=test_dir,
|
||||||
|
imgsz=imgsz,
|
||||||
|
batch_size=bs // WORLD_SIZE * 2,
|
||||||
|
augment=False,
|
||||||
|
cache=opt.cache,
|
||||||
|
rank=-1,
|
||||||
|
workers=nw)
|
||||||
|
|
||||||
|
# Model
|
||||||
|
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
|
||||||
|
if Path(opt.model).is_file() or opt.model.endswith('.pt'):
|
||||||
|
model = attempt_load(opt.model, device='cpu', fuse=False)
|
||||||
|
elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
|
||||||
|
model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
|
||||||
|
else:
|
||||||
|
m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models
|
||||||
|
raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
|
||||||
|
if isinstance(model, DetectionModel):
|
||||||
|
LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
|
||||||
|
model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
|
||||||
|
reshape_classifier_output(model, nc) # update class count
|
||||||
|
for m in model.modules():
|
||||||
|
if not pretrained and hasattr(m, 'reset_parameters'):
|
||||||
|
m.reset_parameters()
|
||||||
|
if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
|
||||||
|
m.p = opt.dropout # set dropout
|
||||||
|
for p in model.parameters():
|
||||||
|
p.requires_grad = True # for training
|
||||||
|
model = model.to(device)
|
||||||
|
|
||||||
|
# Info
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
model.names = trainloader.dataset.classes # attach class names
|
||||||
|
model.transforms = testloader.dataset.torch_transforms # attach inference transforms
|
||||||
|
model_info(model)
|
||||||
|
if opt.verbose:
|
||||||
|
LOGGER.info(model)
|
||||||
|
images, labels = next(iter(trainloader))
|
||||||
|
file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg')
|
||||||
|
logger.log_images(file, name='Train Examples')
|
||||||
|
logger.log_graph(model, imgsz) # log model
|
||||||
|
|
||||||
|
# Optimizer
|
||||||
|
optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
|
||||||
|
|
||||||
|
# Scheduler
|
||||||
|
lrf = 0.01 # final lr (fraction of lr0)
|
||||||
|
# lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
|
||||||
|
lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
|
||||||
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
||||||
|
# scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
|
||||||
|
# final_div_factor=1 / 25 / lrf)
|
||||||
|
|
||||||
|
# EMA
|
||||||
|
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
||||||
|
|
||||||
|
# DDP mode
|
||||||
|
if cuda and RANK != -1:
|
||||||
|
model = smart_DDP(model)
|
||||||
|
|
||||||
|
# Train
|
||||||
|
t0 = time.time()
|
||||||
|
criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
|
||||||
|
best_fitness = 0.0
|
||||||
|
scaler = amp.GradScaler(enabled=cuda)
|
||||||
|
val = test_dir.stem # 'val' or 'test'
|
||||||
|
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
|
||||||
|
f'Using {nw * WORLD_SIZE} dataloader workers\n'
|
||||||
|
f"Logging results to {colorstr('bold', save_dir)}\n"
|
||||||
|
f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
|
||||||
|
f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
|
||||||
|
for epoch in range(epochs): # loop over the dataset multiple times
|
||||||
|
tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
|
||||||
|
model.train()
|
||||||
|
if RANK != -1:
|
||||||
|
trainloader.sampler.set_epoch(epoch)
|
||||||
|
pbar = enumerate(trainloader)
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
|
||||||
|
for i, (images, labels) in pbar: # progress bar
|
||||||
|
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||||||
|
|
||||||
|
# Forward
|
||||||
|
with amp.autocast(enabled=cuda): # stability issues when enabled
|
||||||
|
loss = criterion(model(images), labels)
|
||||||
|
|
||||||
|
# Backward
|
||||||
|
scaler.scale(loss).backward()
|
||||||
|
|
||||||
|
# Optimize
|
||||||
|
scaler.unscale_(optimizer) # unscale gradients
|
||||||
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
if ema:
|
||||||
|
ema.update(model)
|
||||||
|
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
# Print
|
||||||
|
tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
|
||||||
|
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
||||||
|
pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
|
||||||
|
|
||||||
|
# Test
|
||||||
|
if i == len(pbar) - 1: # last batch
|
||||||
|
top1, top5, vloss = validate.run(model=ema.ema,
|
||||||
|
dataloader=testloader,
|
||||||
|
criterion=criterion,
|
||||||
|
pbar=pbar) # test accuracy, loss
|
||||||
|
fitness = top1 # define fitness as top1 accuracy
|
||||||
|
|
||||||
|
# Scheduler
|
||||||
|
scheduler.step()
|
||||||
|
|
||||||
|
# Log metrics
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
# Best fitness
|
||||||
|
if fitness > best_fitness:
|
||||||
|
best_fitness = fitness
|
||||||
|
|
||||||
|
# Log
|
||||||
|
metrics = {
|
||||||
|
"train/loss": tloss,
|
||||||
|
f"{val}/loss": vloss,
|
||||||
|
"metrics/accuracy_top1": top1,
|
||||||
|
"metrics/accuracy_top5": top5,
|
||||||
|
"lr/0": optimizer.param_groups[0]['lr']} # learning rate
|
||||||
|
logger.log_metrics(metrics, epoch)
|
||||||
|
|
||||||
|
# Save model
|
||||||
|
final_epoch = epoch + 1 == epochs
|
||||||
|
if (not opt.nosave) or final_epoch:
|
||||||
|
ckpt = {
|
||||||
|
'epoch': epoch,
|
||||||
|
'best_fitness': best_fitness,
|
||||||
|
'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
|
||||||
|
'ema': None, # deepcopy(ema.ema).half(),
|
||||||
|
'updates': ema.updates,
|
||||||
|
'optimizer': None, # optimizer.state_dict(),
|
||||||
|
'opt': vars(opt),
|
||||||
|
'git': GIT_INFO, # {remote, branch, commit} if a git repo
|
||||||
|
'date': datetime.now().isoformat()}
|
||||||
|
|
||||||
|
# Save last, best and delete
|
||||||
|
torch.save(ckpt, last)
|
||||||
|
if best_fitness == fitness:
|
||||||
|
torch.save(ckpt, best)
|
||||||
|
del ckpt
|
||||||
|
|
||||||
|
# Train complete
|
||||||
|
if RANK in {-1, 0} and final_epoch:
|
||||||
|
LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
|
||||||
|
f"\nResults saved to {colorstr('bold', save_dir)}"
|
||||||
|
f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
|
||||||
|
f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
|
||||||
|
f"\nExport: python export.py --weights {best} --include onnx"
|
||||||
|
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
|
||||||
|
f"\nVisualize: https://netron.app\n")
|
||||||
|
|
||||||
|
# Plot examples
|
||||||
|
images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
|
||||||
|
pred = torch.max(ema.ema(images.to(device)), 1)[1]
|
||||||
|
file = imshow_cls(images, labels, pred, model.names, verbose=False, f=save_dir / 'test_images.jpg')
|
||||||
|
|
||||||
|
# Log results
|
||||||
|
meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
|
||||||
|
logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
|
||||||
|
logger.log_model(best, epochs, metadata=meta)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_opt(known=False):
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
|
||||||
|
parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...')
|
||||||
|
parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
|
||||||
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
|
||||||
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||||||
|
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
||||||
|
parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
|
||||||
|
parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
|
||||||
|
parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
|
||||||
|
parser.add_argument('--decay', type=float, default=5e-5, help='weight decay')
|
||||||
|
parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
|
||||||
|
parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
|
||||||
|
parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
|
||||||
|
parser.add_argument('--verbose', action='store_true', help='Verbose mode')
|
||||||
|
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
||||||
|
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
||||||
|
return parser.parse_known_args()[0] if known else parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main(opt):
|
||||||
|
# Checks
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
print_args(vars(opt))
|
||||||
|
check_git_status()
|
||||||
|
check_requirements()
|
||||||
|
|
||||||
|
# DDP mode
|
||||||
|
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||||
|
if LOCAL_RANK != -1:
|
||||||
|
assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
|
||||||
|
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
|
||||||
|
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
||||||
|
torch.cuda.set_device(LOCAL_RANK)
|
||||||
|
device = torch.device('cuda', LOCAL_RANK)
|
||||||
|
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
|
||||||
|
|
||||||
|
# Train
|
||||||
|
train(opt, device)
|
||||||
|
|
||||||
|
|
||||||
|
def run(**kwargs):
|
||||||
|
# Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
|
||||||
|
opt = parse_opt(True)
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
setattr(opt, k, v)
|
||||||
|
main(opt)
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
opt = parse_opt()
|
||||||
|
main(opt)
|
||||||
1480
classify/tutorial.ipynb
vendored
Normal file
1480
classify/tutorial.ipynb
vendored
Normal file
File diff suppressed because it is too large
Load Diff
170
classify/val.py
Normal file
170
classify/val.py
Normal file
@ -0,0 +1,170 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Validate a trained YOLOv5 classification model on a classification dataset
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
||||||
|
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
|
||||||
|
|
||||||
|
Usage - formats:
|
||||||
|
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch
|
||||||
|
yolov5s-cls.torchscript # TorchScript
|
||||||
|
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||||
|
yolov5s-cls_openvino_model # OpenVINO
|
||||||
|
yolov5s-cls.engine # TensorRT
|
||||||
|
yolov5s-cls.mlmodel # CoreML (macOS-only)
|
||||||
|
yolov5s-cls_saved_model # TensorFlow SavedModel
|
||||||
|
yolov5s-cls.pb # TensorFlow GraphDef
|
||||||
|
yolov5s-cls.tflite # TensorFlow Lite
|
||||||
|
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
|
||||||
|
yolov5s-cls_paddle_model # PaddlePaddle
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[1] # root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
|
from models.common import DetectMultiBackend
|
||||||
|
from utils.dataloaders import create_classification_dataloader
|
||||||
|
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
|
||||||
|
increment_path, print_args)
|
||||||
|
from utils.torch_utils import select_device, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
|
@smart_inference_mode()
|
||||||
|
def run(
|
||||||
|
data=ROOT / '../datasets/mnist', # dataset dir
|
||||||
|
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
|
||||||
|
batch_size=128, # batch size
|
||||||
|
imgsz=224, # inference size (pixels)
|
||||||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
|
workers=8, # max dataloader workers (per RANK in DDP mode)
|
||||||
|
verbose=False, # verbose output
|
||||||
|
project=ROOT / 'runs/val-cls', # save to project/name
|
||||||
|
name='exp', # save to project/name
|
||||||
|
exist_ok=False, # existing project/name ok, do not increment
|
||||||
|
half=False, # use FP16 half-precision inference
|
||||||
|
dnn=False, # use OpenCV DNN for ONNX inference
|
||||||
|
model=None,
|
||||||
|
dataloader=None,
|
||||||
|
criterion=None,
|
||||||
|
pbar=None,
|
||||||
|
):
|
||||||
|
# Initialize/load model and set device
|
||||||
|
training = model is not None
|
||||||
|
if training: # called by train.py
|
||||||
|
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
||||||
|
half &= device.type != 'cpu' # half precision only supported on CUDA
|
||||||
|
model.half() if half else model.float()
|
||||||
|
else: # called directly
|
||||||
|
device = select_device(device, batch_size=batch_size)
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||||
|
save_dir.mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
|
||||||
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||||
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
half = model.fp16 # FP16 supported on limited backends with CUDA
|
||||||
|
if engine:
|
||||||
|
batch_size = model.batch_size
|
||||||
|
else:
|
||||||
|
device = model.device
|
||||||
|
if not (pt or jit):
|
||||||
|
batch_size = 1 # export.py models default to batch-size 1
|
||||||
|
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
||||||
|
|
||||||
|
# Dataloader
|
||||||
|
data = Path(data)
|
||||||
|
test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
|
||||||
|
dataloader = create_classification_dataloader(path=test_dir,
|
||||||
|
imgsz=imgsz,
|
||||||
|
batch_size=batch_size,
|
||||||
|
augment=False,
|
||||||
|
rank=-1,
|
||||||
|
workers=workers)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
|
||||||
|
n = len(dataloader) # number of batches
|
||||||
|
action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
|
||||||
|
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
|
||||||
|
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
|
||||||
|
with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
|
||||||
|
for images, labels in bar:
|
||||||
|
with dt[0]:
|
||||||
|
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||||||
|
|
||||||
|
with dt[1]:
|
||||||
|
y = model(images)
|
||||||
|
|
||||||
|
with dt[2]:
|
||||||
|
pred.append(y.argsort(1, descending=True)[:, :5])
|
||||||
|
targets.append(labels)
|
||||||
|
if criterion:
|
||||||
|
loss += criterion(y, labels)
|
||||||
|
|
||||||
|
loss /= n
|
||||||
|
pred, targets = torch.cat(pred), torch.cat(targets)
|
||||||
|
correct = (targets[:, None] == pred).float()
|
||||||
|
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
|
||||||
|
top1, top5 = acc.mean(0).tolist()
|
||||||
|
|
||||||
|
if pbar:
|
||||||
|
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
|
||||||
|
if verbose: # all classes
|
||||||
|
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
|
||||||
|
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
|
||||||
|
for i, c in model.names.items():
|
||||||
|
acc_i = acc[targets == i]
|
||||||
|
top1i, top5i = acc_i.mean(0).tolist()
|
||||||
|
LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
|
||||||
|
shape = (1, 3, imgsz, imgsz)
|
||||||
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
|
||||||
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
||||||
|
|
||||||
|
return top1, top5, loss
|
||||||
|
|
||||||
|
|
||||||
|
def parse_opt():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=128, help='batch size')
|
||||||
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
||||||
|
parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
|
||||||
|
parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
||||||
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
print_args(vars(opt))
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
def main(opt):
|
||||||
|
check_requirements(exclude=('tensorboard', 'thop'))
|
||||||
|
run(**vars(opt))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
opt = parse_opt()
|
||||||
|
main(opt)
|
||||||
@ -1,10 +1,10 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
|
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||||
# Example usage: python train.py --data Argoverse.yaml
|
# Example usage: python train.py --data Argoverse.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── Argoverse ← downloads here
|
# └── Argoverse ← downloads here (31.3 GB)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
@ -14,8 +14,15 @@ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
|||||||
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 8 # number of classes
|
names:
|
||||||
names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
|
0: person
|
||||||
|
1: bicycle
|
||||||
|
2: car
|
||||||
|
3: motorcycle
|
||||||
|
4: bus
|
||||||
|
5: truck
|
||||||
|
6: traffic_light
|
||||||
|
7: stop_sign
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
@ -32,7 +39,7 @@ download: |
|
|||||||
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv3 format..."):
|
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv3 format..."):
|
||||||
img_id = annot['image_id']
|
img_id = annot['image_id']
|
||||||
img_name = a['images'][img_id]['name']
|
img_name = a['images'][img_id]['name']
|
||||||
img_label_name = img_name[:-3] + "txt"
|
img_label_name = f'{img_name[:-3]}txt'
|
||||||
|
|
||||||
cls = annot['category_id'] # instance class id
|
cls = annot['category_id'] # instance class id
|
||||||
x_center, y_center, width, height = annot['bbox']
|
x_center, y_center, width, height = annot['bbox']
|
||||||
@ -56,7 +63,7 @@ download: |
|
|||||||
|
|
||||||
|
|
||||||
# Download
|
# Download
|
||||||
dir = Path('../datasets/Argoverse') # dataset root dir
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
|
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
|
||||||
download(urls, dir=dir, delete=False)
|
download(urls, dir=dir, delete=False)
|
||||||
|
|
||||||
|
|||||||
@ -1,10 +1,10 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# Global Wheat 2020 dataset http://www.global-wheat.com/
|
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
|
||||||
# Example usage: python train.py --data GlobalWheat2020.yaml
|
# Example usage: python train.py --data GlobalWheat2020.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── GlobalWheat2020 ← downloads here
|
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
@ -26,14 +26,15 @@ test: # test images (optional) 1276 images
|
|||||||
- images/uq_1
|
- images/uq_1
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 1 # number of classes
|
names:
|
||||||
names: ['wheat_head'] # class names
|
0: wheat_head
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
download: |
|
download: |
|
||||||
from utils.general import download, Path
|
from utils.general import download, Path
|
||||||
|
|
||||||
|
|
||||||
# Download
|
# Download
|
||||||
dir = Path(yaml['path']) # dataset root dir
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
|
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
|
||||||
|
|||||||
1022
data/ImageNet.yaml
Normal file
1022
data/ImageNet.yaml
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,10 +1,10 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
|
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
||||||
# Example usage: python train.py --data SKU-110K.yaml
|
# Example usage: python train.py --data SKU-110K.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── SKU-110K ← downloads here
|
# └── SKU-110K ← downloads here (13.6 GB)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
@ -14,8 +14,8 @@ val: val.txt # val images (relative to 'path') 588 images
|
|||||||
test: test.txt # test images (optional) 2936 images
|
test: test.txt # test images (optional) 2936 images
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 1 # number of classes
|
names:
|
||||||
names: ['object'] # class names
|
0: object
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
@ -24,6 +24,7 @@ download: |
|
|||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from utils.general import np, pd, Path, download, xyxy2xywh
|
from utils.general import np, pd, Path, download, xyxy2xywh
|
||||||
|
|
||||||
|
|
||||||
# Download
|
# Download
|
||||||
dir = Path(yaml['path']) # dataset root dir
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
parent = Path(dir.parent) # download dir
|
parent = Path(dir.parent) # download dir
|
||||||
|
|||||||
@ -1,10 +1,10 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
|
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
||||||
# Example usage: python train.py --data VisDrone.yaml
|
# Example usage: python train.py --data VisDrone.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── VisDrone ← downloads here
|
# └── VisDrone ← downloads here (2.3 GB)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
@ -14,8 +14,17 @@ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
|||||||
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 10 # number of classes
|
names:
|
||||||
names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
|
0: pedestrian
|
||||||
|
1: people
|
||||||
|
2: bicycle
|
||||||
|
3: car
|
||||||
|
4: van
|
||||||
|
5: truck
|
||||||
|
6: tricycle
|
||||||
|
7: awning-tricycle
|
||||||
|
8: bus
|
||||||
|
9: motor
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
@ -54,7 +63,7 @@ download: |
|
|||||||
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
|
||||||
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
|
||||||
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
|
||||||
download(urls, dir=dir)
|
download(urls, dir=dir, curl=True, threads=4)
|
||||||
|
|
||||||
# Convert
|
# Convert
|
||||||
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
|
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
|
||||||
|
|||||||
100
data/coco.yaml
100
data/coco.yaml
@ -1,35 +1,107 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# COCO 2017 dataset http://cocodataset.org
|
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
||||||
# Example usage: python train.py --data coco.yaml
|
# Example usage: python train.py --data coco.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── coco ← downloads here
|
# └── coco ← downloads here (20.1 GB)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
path: ../datasets/coco # dataset root dir
|
path: ../datasets/coco # dataset root dir
|
||||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||||
val: val2017.txt # train images (relative to 'path') 5000 images
|
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 80 # number of classes
|
names:
|
||||||
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
0: person
|
||||||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
1: bicycle
|
||||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
2: car
|
||||||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
3: motorcycle
|
||||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
4: airplane
|
||||||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
5: bus
|
||||||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
6: train
|
||||||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
7: truck
|
||||||
'hair drier', 'toothbrush'] # class names
|
8: boat
|
||||||
|
9: traffic light
|
||||||
|
10: fire hydrant
|
||||||
|
11: stop sign
|
||||||
|
12: parking meter
|
||||||
|
13: bench
|
||||||
|
14: bird
|
||||||
|
15: cat
|
||||||
|
16: dog
|
||||||
|
17: horse
|
||||||
|
18: sheep
|
||||||
|
19: cow
|
||||||
|
20: elephant
|
||||||
|
21: bear
|
||||||
|
22: zebra
|
||||||
|
23: giraffe
|
||||||
|
24: backpack
|
||||||
|
25: umbrella
|
||||||
|
26: handbag
|
||||||
|
27: tie
|
||||||
|
28: suitcase
|
||||||
|
29: frisbee
|
||||||
|
30: skis
|
||||||
|
31: snowboard
|
||||||
|
32: sports ball
|
||||||
|
33: kite
|
||||||
|
34: baseball bat
|
||||||
|
35: baseball glove
|
||||||
|
36: skateboard
|
||||||
|
37: surfboard
|
||||||
|
38: tennis racket
|
||||||
|
39: bottle
|
||||||
|
40: wine glass
|
||||||
|
41: cup
|
||||||
|
42: fork
|
||||||
|
43: knife
|
||||||
|
44: spoon
|
||||||
|
45: bowl
|
||||||
|
46: banana
|
||||||
|
47: apple
|
||||||
|
48: sandwich
|
||||||
|
49: orange
|
||||||
|
50: broccoli
|
||||||
|
51: carrot
|
||||||
|
52: hot dog
|
||||||
|
53: pizza
|
||||||
|
54: donut
|
||||||
|
55: cake
|
||||||
|
56: chair
|
||||||
|
57: couch
|
||||||
|
58: potted plant
|
||||||
|
59: bed
|
||||||
|
60: dining table
|
||||||
|
61: toilet
|
||||||
|
62: tv
|
||||||
|
63: laptop
|
||||||
|
64: mouse
|
||||||
|
65: remote
|
||||||
|
66: keyboard
|
||||||
|
67: cell phone
|
||||||
|
68: microwave
|
||||||
|
69: oven
|
||||||
|
70: toaster
|
||||||
|
71: sink
|
||||||
|
72: refrigerator
|
||||||
|
73: book
|
||||||
|
74: clock
|
||||||
|
75: vase
|
||||||
|
76: scissors
|
||||||
|
77: teddy bear
|
||||||
|
78: hair drier
|
||||||
|
79: toothbrush
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional)
|
# Download script/URL (optional)
|
||||||
download: |
|
download: |
|
||||||
from utils.general import download, Path
|
from utils.general import download, Path
|
||||||
|
|
||||||
|
|
||||||
# Download labels
|
# Download labels
|
||||||
segments = False # segment or box labels
|
segments = False # segment or box labels
|
||||||
dir = Path(yaml['path']) # dataset root dir
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
|||||||
101
data/coco128-seg.yaml
Normal file
101
data/coco128-seg.yaml
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||||
|
# Example usage: python train.py --data coco128.yaml
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── coco128-seg ← downloads here (7 MB)
|
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
|
path: ../datasets/coco128-seg # dataset root dir
|
||||||
|
train: images/train2017 # train images (relative to 'path') 128 images
|
||||||
|
val: images/train2017 # val images (relative to 'path') 128 images
|
||||||
|
test: # test images (optional)
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
names:
|
||||||
|
0: person
|
||||||
|
1: bicycle
|
||||||
|
2: car
|
||||||
|
3: motorcycle
|
||||||
|
4: airplane
|
||||||
|
5: bus
|
||||||
|
6: train
|
||||||
|
7: truck
|
||||||
|
8: boat
|
||||||
|
9: traffic light
|
||||||
|
10: fire hydrant
|
||||||
|
11: stop sign
|
||||||
|
12: parking meter
|
||||||
|
13: bench
|
||||||
|
14: bird
|
||||||
|
15: cat
|
||||||
|
16: dog
|
||||||
|
17: horse
|
||||||
|
18: sheep
|
||||||
|
19: cow
|
||||||
|
20: elephant
|
||||||
|
21: bear
|
||||||
|
22: zebra
|
||||||
|
23: giraffe
|
||||||
|
24: backpack
|
||||||
|
25: umbrella
|
||||||
|
26: handbag
|
||||||
|
27: tie
|
||||||
|
28: suitcase
|
||||||
|
29: frisbee
|
||||||
|
30: skis
|
||||||
|
31: snowboard
|
||||||
|
32: sports ball
|
||||||
|
33: kite
|
||||||
|
34: baseball bat
|
||||||
|
35: baseball glove
|
||||||
|
36: skateboard
|
||||||
|
37: surfboard
|
||||||
|
38: tennis racket
|
||||||
|
39: bottle
|
||||||
|
40: wine glass
|
||||||
|
41: cup
|
||||||
|
42: fork
|
||||||
|
43: knife
|
||||||
|
44: spoon
|
||||||
|
45: bowl
|
||||||
|
46: banana
|
||||||
|
47: apple
|
||||||
|
48: sandwich
|
||||||
|
49: orange
|
||||||
|
50: broccoli
|
||||||
|
51: carrot
|
||||||
|
52: hot dog
|
||||||
|
53: pizza
|
||||||
|
54: donut
|
||||||
|
55: cake
|
||||||
|
56: chair
|
||||||
|
57: couch
|
||||||
|
58: potted plant
|
||||||
|
59: bed
|
||||||
|
60: dining table
|
||||||
|
61: toilet
|
||||||
|
62: tv
|
||||||
|
63: laptop
|
||||||
|
64: mouse
|
||||||
|
65: remote
|
||||||
|
66: keyboard
|
||||||
|
67: cell phone
|
||||||
|
68: microwave
|
||||||
|
69: oven
|
||||||
|
70: toaster
|
||||||
|
71: sink
|
||||||
|
72: refrigerator
|
||||||
|
73: book
|
||||||
|
74: clock
|
||||||
|
75: vase
|
||||||
|
76: scissors
|
||||||
|
77: teddy bear
|
||||||
|
78: hair drier
|
||||||
|
79: toothbrush
|
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional)
|
||||||
|
download: https://ultralytics.com/assets/coco128-seg.zip
|
||||||
@ -1,10 +1,10 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
|
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||||
# Example usage: python train.py --data coco128.yaml
|
# Example usage: python train.py --data coco128.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── coco128 ← downloads here
|
# └── coco128 ← downloads here (7 MB)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
@ -14,16 +14,87 @@ val: images/train2017 # val images (relative to 'path') 128 images
|
|||||||
test: # test images (optional)
|
test: # test images (optional)
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 80 # number of classes
|
names:
|
||||||
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
0: person
|
||||||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
1: bicycle
|
||||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
2: car
|
||||||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
3: motorcycle
|
||||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
4: airplane
|
||||||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
5: bus
|
||||||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
6: train
|
||||||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
7: truck
|
||||||
'hair drier', 'toothbrush'] # class names
|
8: boat
|
||||||
|
9: traffic light
|
||||||
|
10: fire hydrant
|
||||||
|
11: stop sign
|
||||||
|
12: parking meter
|
||||||
|
13: bench
|
||||||
|
14: bird
|
||||||
|
15: cat
|
||||||
|
16: dog
|
||||||
|
17: horse
|
||||||
|
18: sheep
|
||||||
|
19: cow
|
||||||
|
20: elephant
|
||||||
|
21: bear
|
||||||
|
22: zebra
|
||||||
|
23: giraffe
|
||||||
|
24: backpack
|
||||||
|
25: umbrella
|
||||||
|
26: handbag
|
||||||
|
27: tie
|
||||||
|
28: suitcase
|
||||||
|
29: frisbee
|
||||||
|
30: skis
|
||||||
|
31: snowboard
|
||||||
|
32: sports ball
|
||||||
|
33: kite
|
||||||
|
34: baseball bat
|
||||||
|
35: baseball glove
|
||||||
|
36: skateboard
|
||||||
|
37: surfboard
|
||||||
|
38: tennis racket
|
||||||
|
39: bottle
|
||||||
|
40: wine glass
|
||||||
|
41: cup
|
||||||
|
42: fork
|
||||||
|
43: knife
|
||||||
|
44: spoon
|
||||||
|
45: bowl
|
||||||
|
46: banana
|
||||||
|
47: apple
|
||||||
|
48: sandwich
|
||||||
|
49: orange
|
||||||
|
50: broccoli
|
||||||
|
51: carrot
|
||||||
|
52: hot dog
|
||||||
|
53: pizza
|
||||||
|
54: donut
|
||||||
|
55: cake
|
||||||
|
56: chair
|
||||||
|
57: couch
|
||||||
|
58: potted plant
|
||||||
|
59: bed
|
||||||
|
60: dining table
|
||||||
|
61: toilet
|
||||||
|
62: tv
|
||||||
|
63: laptop
|
||||||
|
64: mouse
|
||||||
|
65: remote
|
||||||
|
66: keyboard
|
||||||
|
67: cell phone
|
||||||
|
68: microwave
|
||||||
|
69: oven
|
||||||
|
70: toaster
|
||||||
|
71: sink
|
||||||
|
72: refrigerator
|
||||||
|
73: book
|
||||||
|
74: clock
|
||||||
|
75: vase
|
||||||
|
76: scissors
|
||||||
|
77: teddy bear
|
||||||
|
78: hair drier
|
||||||
|
79: toothbrush
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional)
|
# Download script/URL (optional)
|
||||||
|
|||||||
34
data/hyps/hyp.Objects365.yaml
Normal file
34
data/hyps/hyp.Objects365.yaml
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# Hyperparameters for Objects365 training
|
||||||
|
# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
|
||||||
|
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
|
||||||
|
|
||||||
|
lr0: 0.00258
|
||||||
|
lrf: 0.17
|
||||||
|
momentum: 0.779
|
||||||
|
weight_decay: 0.00058
|
||||||
|
warmup_epochs: 1.33
|
||||||
|
warmup_momentum: 0.86
|
||||||
|
warmup_bias_lr: 0.0711
|
||||||
|
box: 0.0539
|
||||||
|
cls: 0.299
|
||||||
|
cls_pw: 0.825
|
||||||
|
obj: 0.632
|
||||||
|
obj_pw: 1.0
|
||||||
|
iou_t: 0.2
|
||||||
|
anchor_t: 3.44
|
||||||
|
anchors: 3.2
|
||||||
|
fl_gamma: 0.0
|
||||||
|
hsv_h: 0.0188
|
||||||
|
hsv_s: 0.704
|
||||||
|
hsv_v: 0.36
|
||||||
|
degrees: 0.0
|
||||||
|
translate: 0.0902
|
||||||
|
scale: 0.491
|
||||||
|
shear: 0.0
|
||||||
|
perspective: 0.0
|
||||||
|
flipud: 0.0
|
||||||
|
fliplr: 0.5
|
||||||
|
mosaic: 1.0
|
||||||
|
mixup: 0.0
|
||||||
|
copy_paste: 0.0
|
||||||
40
data/hyps/hyp.VOC.yaml
Normal file
40
data/hyps/hyp.VOC.yaml
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# Hyperparameters for VOC training
|
||||||
|
# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
|
||||||
|
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
|
||||||
|
|
||||||
|
# YOLOv5 Hyperparameter Evolution Results
|
||||||
|
# Best generation: 467
|
||||||
|
# Last generation: 996
|
||||||
|
# metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
|
||||||
|
# 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
|
||||||
|
|
||||||
|
lr0: 0.00334
|
||||||
|
lrf: 0.15135
|
||||||
|
momentum: 0.74832
|
||||||
|
weight_decay: 0.00025
|
||||||
|
warmup_epochs: 3.3835
|
||||||
|
warmup_momentum: 0.59462
|
||||||
|
warmup_bias_lr: 0.18657
|
||||||
|
box: 0.02
|
||||||
|
cls: 0.21638
|
||||||
|
cls_pw: 0.5
|
||||||
|
obj: 0.51728
|
||||||
|
obj_pw: 0.67198
|
||||||
|
iou_t: 0.2
|
||||||
|
anchor_t: 3.3744
|
||||||
|
fl_gamma: 0.0
|
||||||
|
hsv_h: 0.01041
|
||||||
|
hsv_s: 0.54703
|
||||||
|
hsv_v: 0.27739
|
||||||
|
degrees: 0.0
|
||||||
|
translate: 0.04591
|
||||||
|
scale: 0.75544
|
||||||
|
shear: 0.0
|
||||||
|
perspective: 0.0
|
||||||
|
flipud: 0.0
|
||||||
|
fliplr: 0.5
|
||||||
|
mosaic: 0.85834
|
||||||
|
mixup: 0.04266
|
||||||
|
copy_paste: 0.0
|
||||||
|
anchors: 3.412
|
||||||
@ -1,7 +1,7 @@
|
|||||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# Hyperparameters for COCO training from scratch
|
# Hyperparameters when using Albumentations frameworks
|
||||||
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
|
# python train.py --hyp hyp.no-augmentation.yaml
|
||||||
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
# See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples
|
||||||
|
|
||||||
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||||
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
||||||
@ -11,24 +11,25 @@ warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
|||||||
warmup_momentum: 0.8 # warmup initial momentum
|
warmup_momentum: 0.8 # warmup initial momentum
|
||||||
warmup_bias_lr: 0.1 # warmup initial bias lr
|
warmup_bias_lr: 0.1 # warmup initial bias lr
|
||||||
box: 0.05 # box loss gain
|
box: 0.05 # box loss gain
|
||||||
cls: 0.5 # cls loss gain
|
cls: 0.3 # cls loss gain
|
||||||
cls_pw: 1.0 # cls BCELoss positive_weight
|
cls_pw: 1.0 # cls BCELoss positive_weight
|
||||||
obj: 1.0 # obj loss gain (scale with pixels)
|
obj: 0.7 # obj loss gain (scale with pixels)
|
||||||
obj_pw: 1.0 # obj BCELoss positive_weight
|
obj_pw: 1.0 # obj BCELoss positive_weight
|
||||||
iou_t: 0.20 # IoU training threshold
|
iou_t: 0.20 # IoU training threshold
|
||||||
anchor_t: 4.0 # anchor-multiple threshold
|
anchor_t: 4.0 # anchor-multiple threshold
|
||||||
# anchors: 3 # anchors per output layer (0 to ignore)
|
# anchors: 3 # anchors per output layer (0 to ignore)
|
||||||
|
# this parameters are all zero since we want to use albumentation framework
|
||||||
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
||||||
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
hsv_h: 0 # image HSV-Hue augmentation (fraction)
|
||||||
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
hsv_s: 00 # image HSV-Saturation augmentation (fraction)
|
||||||
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
hsv_v: 0 # image HSV-Value augmentation (fraction)
|
||||||
degrees: 0.0 # image rotation (+/- deg)
|
degrees: 0.0 # image rotation (+/- deg)
|
||||||
translate: 0.1 # image translation (+/- fraction)
|
translate: 0 # image translation (+/- fraction)
|
||||||
scale: 0.5 # image scale (+/- gain)
|
scale: 0 # image scale (+/- gain)
|
||||||
shear: 0.0 # image shear (+/- deg)
|
shear: 0 # image shear (+/- deg)
|
||||||
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
||||||
flipud: 0.0 # image flip up-down (probability)
|
flipud: 0.0 # image flip up-down (probability)
|
||||||
fliplr: 0.5 # image flip left-right (probability)
|
fliplr: 0.0 # image flip left-right (probability)
|
||||||
mosaic: 1.0 # image mosaic (probability)
|
mosaic: 0.0 # image mosaic (probability)
|
||||||
mixup: 0.0 # image mixup (probability)
|
mixup: 0.0 # image mixup (probability)
|
||||||
copy_paste: 0.0 # segment copy-paste (probability)
|
copy_paste: 0.0 # segment copy-paste (probability)
|
||||||
@ -4,7 +4,7 @@
|
|||||||
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
||||||
|
|
||||||
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||||
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
|
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
||||||
momentum: 0.937 # SGD momentum/Adam beta1
|
momentum: 0.937 # SGD momentum/Adam beta1
|
||||||
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
||||||
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
||||||
|
|||||||
@ -1,10 +1,10 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# Objects365 dataset https://www.objects365.org/
|
# Objects365 dataset https://www.objects365.org/ by Megvii
|
||||||
# Example usage: python train.py --data Objects365.yaml
|
# Example usage: python train.py --data Objects365.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── Objects365 ← downloads here
|
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
@ -14,56 +14,382 @@ val: images/val # val images (relative to 'path') 80000 images
|
|||||||
test: # test images (optional)
|
test: # test images (optional)
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 365 # number of classes
|
names:
|
||||||
names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
|
0: Person
|
||||||
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
|
1: Sneakers
|
||||||
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
|
2: Chair
|
||||||
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
|
3: Other Shoes
|
||||||
'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
|
4: Hat
|
||||||
'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
|
5: Car
|
||||||
'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
|
6: Lamp
|
||||||
'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
|
7: Glasses
|
||||||
'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
|
8: Bottle
|
||||||
'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
|
9: Desk
|
||||||
'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
|
10: Cup
|
||||||
'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
|
11: Street Lights
|
||||||
'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
|
12: Cabinet/shelf
|
||||||
'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
|
13: Handbag/Satchel
|
||||||
'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
|
14: Bracelet
|
||||||
'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
|
15: Plate
|
||||||
'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
|
16: Picture/Frame
|
||||||
'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
|
17: Helmet
|
||||||
'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
|
18: Book
|
||||||
'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
|
19: Gloves
|
||||||
'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
|
20: Storage box
|
||||||
'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
|
21: Boat
|
||||||
'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
|
22: Leather Shoes
|
||||||
'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
|
23: Flower
|
||||||
'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
|
24: Bench
|
||||||
'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
|
25: Potted Plant
|
||||||
'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
|
26: Bowl/Basin
|
||||||
'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
|
27: Flag
|
||||||
'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
|
28: Pillow
|
||||||
'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
|
29: Boots
|
||||||
'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
|
30: Vase
|
||||||
'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
|
31: Microphone
|
||||||
'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
|
32: Necklace
|
||||||
'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
|
33: Ring
|
||||||
'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
|
34: SUV
|
||||||
'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
|
35: Wine Glass
|
||||||
'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
|
36: Belt
|
||||||
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
|
37: Monitor/TV
|
||||||
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
|
38: Backpack
|
||||||
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
|
39: Umbrella
|
||||||
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
|
40: Traffic Light
|
||||||
|
41: Speaker
|
||||||
|
42: Watch
|
||||||
|
43: Tie
|
||||||
|
44: Trash bin Can
|
||||||
|
45: Slippers
|
||||||
|
46: Bicycle
|
||||||
|
47: Stool
|
||||||
|
48: Barrel/bucket
|
||||||
|
49: Van
|
||||||
|
50: Couch
|
||||||
|
51: Sandals
|
||||||
|
52: Basket
|
||||||
|
53: Drum
|
||||||
|
54: Pen/Pencil
|
||||||
|
55: Bus
|
||||||
|
56: Wild Bird
|
||||||
|
57: High Heels
|
||||||
|
58: Motorcycle
|
||||||
|
59: Guitar
|
||||||
|
60: Carpet
|
||||||
|
61: Cell Phone
|
||||||
|
62: Bread
|
||||||
|
63: Camera
|
||||||
|
64: Canned
|
||||||
|
65: Truck
|
||||||
|
66: Traffic cone
|
||||||
|
67: Cymbal
|
||||||
|
68: Lifesaver
|
||||||
|
69: Towel
|
||||||
|
70: Stuffed Toy
|
||||||
|
71: Candle
|
||||||
|
72: Sailboat
|
||||||
|
73: Laptop
|
||||||
|
74: Awning
|
||||||
|
75: Bed
|
||||||
|
76: Faucet
|
||||||
|
77: Tent
|
||||||
|
78: Horse
|
||||||
|
79: Mirror
|
||||||
|
80: Power outlet
|
||||||
|
81: Sink
|
||||||
|
82: Apple
|
||||||
|
83: Air Conditioner
|
||||||
|
84: Knife
|
||||||
|
85: Hockey Stick
|
||||||
|
86: Paddle
|
||||||
|
87: Pickup Truck
|
||||||
|
88: Fork
|
||||||
|
89: Traffic Sign
|
||||||
|
90: Balloon
|
||||||
|
91: Tripod
|
||||||
|
92: Dog
|
||||||
|
93: Spoon
|
||||||
|
94: Clock
|
||||||
|
95: Pot
|
||||||
|
96: Cow
|
||||||
|
97: Cake
|
||||||
|
98: Dinning Table
|
||||||
|
99: Sheep
|
||||||
|
100: Hanger
|
||||||
|
101: Blackboard/Whiteboard
|
||||||
|
102: Napkin
|
||||||
|
103: Other Fish
|
||||||
|
104: Orange/Tangerine
|
||||||
|
105: Toiletry
|
||||||
|
106: Keyboard
|
||||||
|
107: Tomato
|
||||||
|
108: Lantern
|
||||||
|
109: Machinery Vehicle
|
||||||
|
110: Fan
|
||||||
|
111: Green Vegetables
|
||||||
|
112: Banana
|
||||||
|
113: Baseball Glove
|
||||||
|
114: Airplane
|
||||||
|
115: Mouse
|
||||||
|
116: Train
|
||||||
|
117: Pumpkin
|
||||||
|
118: Soccer
|
||||||
|
119: Skiboard
|
||||||
|
120: Luggage
|
||||||
|
121: Nightstand
|
||||||
|
122: Tea pot
|
||||||
|
123: Telephone
|
||||||
|
124: Trolley
|
||||||
|
125: Head Phone
|
||||||
|
126: Sports Car
|
||||||
|
127: Stop Sign
|
||||||
|
128: Dessert
|
||||||
|
129: Scooter
|
||||||
|
130: Stroller
|
||||||
|
131: Crane
|
||||||
|
132: Remote
|
||||||
|
133: Refrigerator
|
||||||
|
134: Oven
|
||||||
|
135: Lemon
|
||||||
|
136: Duck
|
||||||
|
137: Baseball Bat
|
||||||
|
138: Surveillance Camera
|
||||||
|
139: Cat
|
||||||
|
140: Jug
|
||||||
|
141: Broccoli
|
||||||
|
142: Piano
|
||||||
|
143: Pizza
|
||||||
|
144: Elephant
|
||||||
|
145: Skateboard
|
||||||
|
146: Surfboard
|
||||||
|
147: Gun
|
||||||
|
148: Skating and Skiing shoes
|
||||||
|
149: Gas stove
|
||||||
|
150: Donut
|
||||||
|
151: Bow Tie
|
||||||
|
152: Carrot
|
||||||
|
153: Toilet
|
||||||
|
154: Kite
|
||||||
|
155: Strawberry
|
||||||
|
156: Other Balls
|
||||||
|
157: Shovel
|
||||||
|
158: Pepper
|
||||||
|
159: Computer Box
|
||||||
|
160: Toilet Paper
|
||||||
|
161: Cleaning Products
|
||||||
|
162: Chopsticks
|
||||||
|
163: Microwave
|
||||||
|
164: Pigeon
|
||||||
|
165: Baseball
|
||||||
|
166: Cutting/chopping Board
|
||||||
|
167: Coffee Table
|
||||||
|
168: Side Table
|
||||||
|
169: Scissors
|
||||||
|
170: Marker
|
||||||
|
171: Pie
|
||||||
|
172: Ladder
|
||||||
|
173: Snowboard
|
||||||
|
174: Cookies
|
||||||
|
175: Radiator
|
||||||
|
176: Fire Hydrant
|
||||||
|
177: Basketball
|
||||||
|
178: Zebra
|
||||||
|
179: Grape
|
||||||
|
180: Giraffe
|
||||||
|
181: Potato
|
||||||
|
182: Sausage
|
||||||
|
183: Tricycle
|
||||||
|
184: Violin
|
||||||
|
185: Egg
|
||||||
|
186: Fire Extinguisher
|
||||||
|
187: Candy
|
||||||
|
188: Fire Truck
|
||||||
|
189: Billiards
|
||||||
|
190: Converter
|
||||||
|
191: Bathtub
|
||||||
|
192: Wheelchair
|
||||||
|
193: Golf Club
|
||||||
|
194: Briefcase
|
||||||
|
195: Cucumber
|
||||||
|
196: Cigar/Cigarette
|
||||||
|
197: Paint Brush
|
||||||
|
198: Pear
|
||||||
|
199: Heavy Truck
|
||||||
|
200: Hamburger
|
||||||
|
201: Extractor
|
||||||
|
202: Extension Cord
|
||||||
|
203: Tong
|
||||||
|
204: Tennis Racket
|
||||||
|
205: Folder
|
||||||
|
206: American Football
|
||||||
|
207: earphone
|
||||||
|
208: Mask
|
||||||
|
209: Kettle
|
||||||
|
210: Tennis
|
||||||
|
211: Ship
|
||||||
|
212: Swing
|
||||||
|
213: Coffee Machine
|
||||||
|
214: Slide
|
||||||
|
215: Carriage
|
||||||
|
216: Onion
|
||||||
|
217: Green beans
|
||||||
|
218: Projector
|
||||||
|
219: Frisbee
|
||||||
|
220: Washing Machine/Drying Machine
|
||||||
|
221: Chicken
|
||||||
|
222: Printer
|
||||||
|
223: Watermelon
|
||||||
|
224: Saxophone
|
||||||
|
225: Tissue
|
||||||
|
226: Toothbrush
|
||||||
|
227: Ice cream
|
||||||
|
228: Hot-air balloon
|
||||||
|
229: Cello
|
||||||
|
230: French Fries
|
||||||
|
231: Scale
|
||||||
|
232: Trophy
|
||||||
|
233: Cabbage
|
||||||
|
234: Hot dog
|
||||||
|
235: Blender
|
||||||
|
236: Peach
|
||||||
|
237: Rice
|
||||||
|
238: Wallet/Purse
|
||||||
|
239: Volleyball
|
||||||
|
240: Deer
|
||||||
|
241: Goose
|
||||||
|
242: Tape
|
||||||
|
243: Tablet
|
||||||
|
244: Cosmetics
|
||||||
|
245: Trumpet
|
||||||
|
246: Pineapple
|
||||||
|
247: Golf Ball
|
||||||
|
248: Ambulance
|
||||||
|
249: Parking meter
|
||||||
|
250: Mango
|
||||||
|
251: Key
|
||||||
|
252: Hurdle
|
||||||
|
253: Fishing Rod
|
||||||
|
254: Medal
|
||||||
|
255: Flute
|
||||||
|
256: Brush
|
||||||
|
257: Penguin
|
||||||
|
258: Megaphone
|
||||||
|
259: Corn
|
||||||
|
260: Lettuce
|
||||||
|
261: Garlic
|
||||||
|
262: Swan
|
||||||
|
263: Helicopter
|
||||||
|
264: Green Onion
|
||||||
|
265: Sandwich
|
||||||
|
266: Nuts
|
||||||
|
267: Speed Limit Sign
|
||||||
|
268: Induction Cooker
|
||||||
|
269: Broom
|
||||||
|
270: Trombone
|
||||||
|
271: Plum
|
||||||
|
272: Rickshaw
|
||||||
|
273: Goldfish
|
||||||
|
274: Kiwi fruit
|
||||||
|
275: Router/modem
|
||||||
|
276: Poker Card
|
||||||
|
277: Toaster
|
||||||
|
278: Shrimp
|
||||||
|
279: Sushi
|
||||||
|
280: Cheese
|
||||||
|
281: Notepaper
|
||||||
|
282: Cherry
|
||||||
|
283: Pliers
|
||||||
|
284: CD
|
||||||
|
285: Pasta
|
||||||
|
286: Hammer
|
||||||
|
287: Cue
|
||||||
|
288: Avocado
|
||||||
|
289: Hamimelon
|
||||||
|
290: Flask
|
||||||
|
291: Mushroom
|
||||||
|
292: Screwdriver
|
||||||
|
293: Soap
|
||||||
|
294: Recorder
|
||||||
|
295: Bear
|
||||||
|
296: Eggplant
|
||||||
|
297: Board Eraser
|
||||||
|
298: Coconut
|
||||||
|
299: Tape Measure/Ruler
|
||||||
|
300: Pig
|
||||||
|
301: Showerhead
|
||||||
|
302: Globe
|
||||||
|
303: Chips
|
||||||
|
304: Steak
|
||||||
|
305: Crosswalk Sign
|
||||||
|
306: Stapler
|
||||||
|
307: Camel
|
||||||
|
308: Formula 1
|
||||||
|
309: Pomegranate
|
||||||
|
310: Dishwasher
|
||||||
|
311: Crab
|
||||||
|
312: Hoverboard
|
||||||
|
313: Meat ball
|
||||||
|
314: Rice Cooker
|
||||||
|
315: Tuba
|
||||||
|
316: Calculator
|
||||||
|
317: Papaya
|
||||||
|
318: Antelope
|
||||||
|
319: Parrot
|
||||||
|
320: Seal
|
||||||
|
321: Butterfly
|
||||||
|
322: Dumbbell
|
||||||
|
323: Donkey
|
||||||
|
324: Lion
|
||||||
|
325: Urinal
|
||||||
|
326: Dolphin
|
||||||
|
327: Electric Drill
|
||||||
|
328: Hair Dryer
|
||||||
|
329: Egg tart
|
||||||
|
330: Jellyfish
|
||||||
|
331: Treadmill
|
||||||
|
332: Lighter
|
||||||
|
333: Grapefruit
|
||||||
|
334: Game board
|
||||||
|
335: Mop
|
||||||
|
336: Radish
|
||||||
|
337: Baozi
|
||||||
|
338: Target
|
||||||
|
339: French
|
||||||
|
340: Spring Rolls
|
||||||
|
341: Monkey
|
||||||
|
342: Rabbit
|
||||||
|
343: Pencil Case
|
||||||
|
344: Yak
|
||||||
|
345: Red Cabbage
|
||||||
|
346: Binoculars
|
||||||
|
347: Asparagus
|
||||||
|
348: Barbell
|
||||||
|
349: Scallop
|
||||||
|
350: Noddles
|
||||||
|
351: Comb
|
||||||
|
352: Dumpling
|
||||||
|
353: Oyster
|
||||||
|
354: Table Tennis paddle
|
||||||
|
355: Cosmetics Brush/Eyeliner Pencil
|
||||||
|
356: Chainsaw
|
||||||
|
357: Eraser
|
||||||
|
358: Lobster
|
||||||
|
359: Durian
|
||||||
|
360: Okra
|
||||||
|
361: Lipstick
|
||||||
|
362: Cosmetics Mirror
|
||||||
|
363: Curling
|
||||||
|
364: Table Tennis
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
download: |
|
download: |
|
||||||
from pycocotools.coco import COCO
|
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from utils.general import Path, download, np, xyxy2xywhn
|
from utils.general import Path, check_requirements, download, np, xyxy2xywhn
|
||||||
|
|
||||||
|
check_requirements(('pycocotools>=2.0',))
|
||||||
|
from pycocotools.coco import COCO
|
||||||
|
|
||||||
# Make Directories
|
# Make Directories
|
||||||
dir = Path(yaml['path']) # dataset root dir
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
|||||||
@ -1,18 +1,22 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# Download latest models from https://github.com/ultralytics/yolov3/releases
|
# Download latest models from https://github.com/ultralytics/yolov5/releases
|
||||||
# Example usage: bash path/to/download_weights.sh
|
# Example usage: bash data/scripts/download_weights.sh
|
||||||
# parent
|
# parent
|
||||||
# └── yolov3
|
# └── yolov5
|
||||||
# ├── yolov3.pt ← downloads here
|
# ├── yolov5s.pt ← downloads here
|
||||||
# ├── yolov3-spp.pt
|
# ├── yolov5m.pt
|
||||||
# └── ...
|
# └── ...
|
||||||
|
|
||||||
python - <<EOF
|
python - <<EOF
|
||||||
from utils.downloads import attempt_download
|
from utils.downloads import attempt_download
|
||||||
|
|
||||||
models = ['yolov3', 'yolov3-spp', 'yolov3-tiny']
|
p5 = list('nsmlx') # P5 models
|
||||||
for x in models:
|
p6 = [f'{x}6' for x in p5] # P6 models
|
||||||
attempt_download(f'{x}.pt')
|
cls = [f'{x}-cls' for x in p5] # classification models
|
||||||
|
seg = [f'{x}-seg' for x in p5] # classification models
|
||||||
|
|
||||||
|
for x in p5 + p6 + cls + seg:
|
||||||
|
attempt_download(f'weights/yolov5{x}.pt')
|
||||||
|
|
||||||
EOF
|
EOF
|
||||||
|
|||||||
@ -3,25 +3,54 @@
|
|||||||
# Download COCO 2017 dataset http://cocodataset.org
|
# Download COCO 2017 dataset http://cocodataset.org
|
||||||
# Example usage: bash data/scripts/get_coco.sh
|
# Example usage: bash data/scripts/get_coco.sh
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── coco ← downloads here
|
# └── coco ← downloads here
|
||||||
|
|
||||||
|
# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
|
||||||
|
if [ "$#" -gt 0 ]; then
|
||||||
|
for opt in "$@"; do
|
||||||
|
case "${opt}" in
|
||||||
|
--train) train=true ;;
|
||||||
|
--val) val=true ;;
|
||||||
|
--test) test=true ;;
|
||||||
|
--segments) segments=true ;;
|
||||||
|
esac
|
||||||
|
done
|
||||||
|
else
|
||||||
|
train=true
|
||||||
|
val=true
|
||||||
|
test=false
|
||||||
|
segments=false
|
||||||
|
fi
|
||||||
|
|
||||||
# Download/unzip labels
|
# Download/unzip labels
|
||||||
d='../datasets' # unzip directory
|
d='../datasets' # unzip directory
|
||||||
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
||||||
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
|
if [ "$segments" == "true" ]; then
|
||||||
|
f='coco2017labels-segments.zip' # 168 MB
|
||||||
|
else
|
||||||
|
f='coco2017labels.zip' # 46 MB
|
||||||
|
fi
|
||||||
echo 'Downloading' $url$f ' ...'
|
echo 'Downloading' $url$f ' ...'
|
||||||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
|
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
||||||
|
|
||||||
# Download/unzip images
|
# Download/unzip images
|
||||||
d='../datasets/coco/images' # unzip directory
|
d='../datasets/coco/images' # unzip directory
|
||||||
url=http://images.cocodataset.org/zips/
|
url=http://images.cocodataset.org/zips/
|
||||||
f1='train2017.zip' # 19G, 118k images
|
if [ "$train" == "true" ]; then
|
||||||
f2='val2017.zip' # 1G, 5k images
|
f='train2017.zip' # 19G, 118k images
|
||||||
f3='test2017.zip' # 7G, 41k images (optional)
|
|
||||||
for f in $f1 $f2; do
|
|
||||||
echo 'Downloading' $url$f '...'
|
echo 'Downloading' $url$f '...'
|
||||||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
|
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
||||||
done
|
fi
|
||||||
|
if [ "$val" == "true" ]; then
|
||||||
|
f='val2017.zip' # 1G, 5k images
|
||||||
|
echo 'Downloading' $url$f '...'
|
||||||
|
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
||||||
|
fi
|
||||||
|
if [ "$test" == "true" ]; then
|
||||||
|
f='test2017.zip' # 7G, 41k images (optional)
|
||||||
|
echo 'Downloading' $url$f '...'
|
||||||
|
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
||||||
|
fi
|
||||||
wait # finish background tasks
|
wait # finish background tasks
|
||||||
|
|||||||
4
data/scripts/get_coco128.sh
Normal file → Executable file
4
data/scripts/get_coco128.sh
Normal file → Executable file
@ -3,7 +3,7 @@
|
|||||||
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
|
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
|
||||||
# Example usage: bash data/scripts/get_coco128.sh
|
# Example usage: bash data/scripts/get_coco128.sh
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── coco128 ← downloads here
|
# └── coco128 ← downloads here
|
||||||
|
|
||||||
@ -12,6 +12,6 @@ d='../datasets' # unzip directory
|
|||||||
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
||||||
f='coco128.zip' # or 'coco128-segments.zip', 68 MB
|
f='coco128.zip' # or 'coco128-segments.zip', 68 MB
|
||||||
echo 'Downloading' $url$f ' ...'
|
echo 'Downloading' $url$f ' ...'
|
||||||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
|
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
||||||
|
|
||||||
wait # finish background tasks
|
wait # finish background tasks
|
||||||
|
|||||||
51
data/scripts/get_imagenet.sh
Executable file
51
data/scripts/get_imagenet.sh
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# Download ILSVRC2012 ImageNet dataset https://image-net.org
|
||||||
|
# Example usage: bash data/scripts/get_imagenet.sh
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── imagenet ← downloads here
|
||||||
|
|
||||||
|
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
|
||||||
|
if [ "$#" -gt 0 ]; then
|
||||||
|
for opt in "$@"; do
|
||||||
|
case "${opt}" in
|
||||||
|
--train) train=true ;;
|
||||||
|
--val) val=true ;;
|
||||||
|
esac
|
||||||
|
done
|
||||||
|
else
|
||||||
|
train=true
|
||||||
|
val=true
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Make dir
|
||||||
|
d='../datasets/imagenet' # unzip directory
|
||||||
|
mkdir -p $d && cd $d
|
||||||
|
|
||||||
|
# Download/unzip train
|
||||||
|
if [ "$train" == "true" ]; then
|
||||||
|
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
|
||||||
|
mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
|
||||||
|
tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
|
||||||
|
find . -name "*.tar" | while read NAME; do
|
||||||
|
mkdir -p "${NAME%.tar}"
|
||||||
|
tar -xf "${NAME}" -C "${NAME%.tar}"
|
||||||
|
rm -f "${NAME}"
|
||||||
|
done
|
||||||
|
cd ..
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Download/unzip val
|
||||||
|
if [ "$val" == "true" ]; then
|
||||||
|
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
|
||||||
|
mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
|
||||||
|
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
|
||||||
|
# rm train/n04266014/n04266014_10835.JPEG
|
||||||
|
|
||||||
|
# TFRecords (optional)
|
||||||
|
# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt
|
||||||
@ -1,10 +1,10 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC
|
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
||||||
# Example usage: python train.py --data VOC.yaml
|
# Example usage: python train.py --data VOC.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── VOC ← downloads here
|
# └── VOC ← downloads here (2.8 GB)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
@ -20,9 +20,27 @@ test: # test images (optional)
|
|||||||
- images/test2007
|
- images/test2007
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 20 # number of classes
|
names:
|
||||||
names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
|
0: aeroplane
|
||||||
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
|
1: bicycle
|
||||||
|
2: bird
|
||||||
|
3: boat
|
||||||
|
4: bottle
|
||||||
|
5: bus
|
||||||
|
6: car
|
||||||
|
7: cat
|
||||||
|
8: chair
|
||||||
|
9: cow
|
||||||
|
10: diningtable
|
||||||
|
11: dog
|
||||||
|
12: horse
|
||||||
|
13: motorbike
|
||||||
|
14: person
|
||||||
|
15: pottedplant
|
||||||
|
16: sheep
|
||||||
|
17: sofa
|
||||||
|
18: train
|
||||||
|
19: tvmonitor
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
@ -47,32 +65,34 @@ download: |
|
|||||||
w = int(size.find('width').text)
|
w = int(size.find('width').text)
|
||||||
h = int(size.find('height').text)
|
h = int(size.find('height').text)
|
||||||
|
|
||||||
|
names = list(yaml['names'].values()) # names list
|
||||||
for obj in root.iter('object'):
|
for obj in root.iter('object'):
|
||||||
cls = obj.find('name').text
|
cls = obj.find('name').text
|
||||||
if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
|
if cls in names and int(obj.find('difficult').text) != 1:
|
||||||
xmlbox = obj.find('bndbox')
|
xmlbox = obj.find('bndbox')
|
||||||
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
|
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
|
||||||
cls_id = yaml['names'].index(cls) # class id
|
cls_id = names.index(cls) # class id
|
||||||
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
|
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
|
||||||
|
|
||||||
|
|
||||||
# Download
|
# Download
|
||||||
dir = Path(yaml['path']) # dataset root dir
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
||||||
urls = [url + 'VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
||||||
url + 'VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
||||||
url + 'VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
||||||
download(urls, dir=dir / 'images', delete=False)
|
download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
|
||||||
|
|
||||||
# Convert
|
# Convert
|
||||||
path = dir / f'images/VOCdevkit'
|
path = dir / 'images/VOCdevkit'
|
||||||
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
|
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
|
||||||
imgs_path = dir / 'images' / f'{image_set}{year}'
|
imgs_path = dir / 'images' / f'{image_set}{year}'
|
||||||
lbs_path = dir / 'labels' / f'{image_set}{year}'
|
lbs_path = dir / 'labels' / f'{image_set}{year}'
|
||||||
imgs_path.mkdir(exist_ok=True, parents=True)
|
imgs_path.mkdir(exist_ok=True, parents=True)
|
||||||
lbs_path.mkdir(exist_ok=True, parents=True)
|
lbs_path.mkdir(exist_ok=True, parents=True)
|
||||||
|
|
||||||
image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split()
|
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
|
||||||
|
image_ids = f.read().strip().split()
|
||||||
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
|
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
|
||||||
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
|
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
|
||||||
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
|
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
|
||||||
|
|||||||
@ -1,11 +1,11 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# xView 2018 dataset https://challenge.xviewdataset.org
|
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
||||||
# -------- DOWNLOAD DATA MANUALLY from URL above and unzip to 'datasets/xView' before running train command! --------
|
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
|
||||||
# Example usage: python train.py --data xView.yaml
|
# Example usage: python train.py --data xView.yaml
|
||||||
# parent
|
# parent
|
||||||
# ├── yolov3
|
# ├── yolov5
|
||||||
# └── datasets
|
# └── datasets
|
||||||
# └── xView ← downloads here
|
# └── xView ← downloads here (20.7 GB)
|
||||||
|
|
||||||
|
|
||||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
@ -14,16 +14,67 @@ train: images/autosplit_train.txt # train images (relative to 'path') 90% of 84
|
|||||||
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
||||||
|
|
||||||
# Classes
|
# Classes
|
||||||
nc: 60 # number of classes
|
names:
|
||||||
names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
|
0: Fixed-wing Aircraft
|
||||||
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
|
1: Small Aircraft
|
||||||
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
|
2: Cargo Plane
|
||||||
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
|
3: Helicopter
|
||||||
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
|
4: Passenger Vehicle
|
||||||
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
|
5: Small Car
|
||||||
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
|
6: Bus
|
||||||
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
|
7: Pickup Truck
|
||||||
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names
|
8: Utility Truck
|
||||||
|
9: Truck
|
||||||
|
10: Cargo Truck
|
||||||
|
11: Truck w/Box
|
||||||
|
12: Truck Tractor
|
||||||
|
13: Trailer
|
||||||
|
14: Truck w/Flatbed
|
||||||
|
15: Truck w/Liquid
|
||||||
|
16: Crane Truck
|
||||||
|
17: Railway Vehicle
|
||||||
|
18: Passenger Car
|
||||||
|
19: Cargo Car
|
||||||
|
20: Flat Car
|
||||||
|
21: Tank car
|
||||||
|
22: Locomotive
|
||||||
|
23: Maritime Vessel
|
||||||
|
24: Motorboat
|
||||||
|
25: Sailboat
|
||||||
|
26: Tugboat
|
||||||
|
27: Barge
|
||||||
|
28: Fishing Vessel
|
||||||
|
29: Ferry
|
||||||
|
30: Yacht
|
||||||
|
31: Container Ship
|
||||||
|
32: Oil Tanker
|
||||||
|
33: Engineering Vehicle
|
||||||
|
34: Tower crane
|
||||||
|
35: Container Crane
|
||||||
|
36: Reach Stacker
|
||||||
|
37: Straddle Carrier
|
||||||
|
38: Mobile Crane
|
||||||
|
39: Dump Truck
|
||||||
|
40: Haul Truck
|
||||||
|
41: Scraper/Tractor
|
||||||
|
42: Front loader/Bulldozer
|
||||||
|
43: Excavator
|
||||||
|
44: Cement Mixer
|
||||||
|
45: Ground Grader
|
||||||
|
46: Hut/Tent
|
||||||
|
47: Shed
|
||||||
|
48: Building
|
||||||
|
49: Aircraft Hangar
|
||||||
|
50: Damaged Building
|
||||||
|
51: Facility
|
||||||
|
52: Construction Site
|
||||||
|
53: Vehicle Lot
|
||||||
|
54: Helipad
|
||||||
|
55: Storage Tank
|
||||||
|
56: Shipping container lot
|
||||||
|
57: Shipping Container
|
||||||
|
58: Pylon
|
||||||
|
59: Tower
|
||||||
|
|
||||||
|
|
||||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
@ -36,7 +87,7 @@ download: |
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from utils.datasets import autosplit
|
from utils.dataloaders import autosplit
|
||||||
from utils.general import download, xyxy2xywhn
|
from utils.general import download, xyxy2xywhn
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
155
detect.py
155
detect.py
@ -1,44 +1,61 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
"""
|
"""
|
||||||
Run inference on images, videos, directories, streams, etc.
|
Run YOLOv3 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
||||||
|
|
||||||
Usage:
|
Usage - sources:
|
||||||
$ python path/to/detect.py --weights yolov3.pt --source 0 # webcam
|
$ python detect.py --weights yolov5s.pt --source 0 # webcam
|
||||||
img.jpg # image
|
img.jpg # image
|
||||||
vid.mp4 # video
|
vid.mp4 # video
|
||||||
path/ # directory
|
screen # screenshot
|
||||||
path/*.jpg # glob
|
path/ # directory
|
||||||
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
list.txt # list of images
|
||||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
list.streams # list of streams
|
||||||
|
'path/*.jpg' # glob
|
||||||
|
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||||
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||||
|
|
||||||
|
Usage - formats:
|
||||||
|
$ python detect.py --weights yolov5s.pt # PyTorch
|
||||||
|
yolov5s.torchscript # TorchScript
|
||||||
|
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||||
|
yolov5s_openvino_model # OpenVINO
|
||||||
|
yolov5s.engine # TensorRT
|
||||||
|
yolov5s.mlmodel # CoreML (macOS-only)
|
||||||
|
yolov5s_saved_model # TensorFlow SavedModel
|
||||||
|
yolov5s.pb # TensorFlow GraphDef
|
||||||
|
yolov5s.tflite # TensorFlow Lite
|
||||||
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
||||||
|
yolov5s_paddle_model # PaddlePaddle
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
|
import platform
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import cv2
|
|
||||||
import torch
|
import torch
|
||||||
import torch.backends.cudnn as cudnn
|
|
||||||
|
|
||||||
FILE = Path(__file__).resolve()
|
FILE = Path(__file__).resolve()
|
||||||
ROOT = FILE.parents[0] # root directory
|
ROOT = FILE.parents[0] # YOLOv3 root directory
|
||||||
if str(ROOT) not in sys.path:
|
if str(ROOT) not in sys.path:
|
||||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
from models.common import DetectMultiBackend
|
from models.common import DetectMultiBackend
|
||||||
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
|
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
||||||
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
|
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
||||||
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
|
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
||||||
from utils.plots import Annotator, colors, save_one_box
|
from utils.plots import Annotator, colors, save_one_box
|
||||||
from utils.torch_utils import select_device, time_sync
|
from utils.torch_utils import select_device, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@smart_inference_mode()
|
||||||
def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
|
def run(
|
||||||
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
|
weights=ROOT / 'yolov5s.pt', # model path or triton URL
|
||||||
imgsz=640, # inference size (pixels)
|
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
||||||
|
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||||
|
imgsz=(640, 640), # inference size (height, width)
|
||||||
conf_thres=0.25, # confidence threshold
|
conf_thres=0.25, # confidence threshold
|
||||||
iou_thres=0.45, # NMS IOU threshold
|
iou_thres=0.45, # NMS IOU threshold
|
||||||
max_det=1000, # maximum detections per image
|
max_det=1000, # maximum detections per image
|
||||||
@ -61,12 +78,14 @@ def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
|
|||||||
hide_conf=False, # hide confidences
|
hide_conf=False, # hide confidences
|
||||||
half=False, # use FP16 half-precision inference
|
half=False, # use FP16 half-precision inference
|
||||||
dnn=False, # use OpenCV DNN for ONNX inference
|
dnn=False, # use OpenCV DNN for ONNX inference
|
||||||
):
|
vid_stride=1, # video frame-rate stride
|
||||||
|
):
|
||||||
source = str(source)
|
source = str(source)
|
||||||
save_img = not nosave and not source.endswith('.txt') # save inference images
|
save_img = not nosave and not source.endswith('.txt') # save inference images
|
||||||
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
||||||
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
||||||
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
|
||||||
|
screenshot = source.lower().startswith('screen')
|
||||||
if is_url and is_file:
|
if is_url and is_file:
|
||||||
source = check_file(source) # download
|
source = check_file(source) # download
|
||||||
|
|
||||||
@ -76,49 +95,41 @@ def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
|
|||||||
|
|
||||||
# Load model
|
# Load model
|
||||||
device = select_device(device)
|
device = select_device(device)
|
||||||
model = DetectMultiBackend(weights, device=device, dnn=dnn)
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||||
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
|
stride, names, pt = model.stride, model.names, model.pt
|
||||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
|
||||||
# Half
|
|
||||||
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
|
|
||||||
if pt:
|
|
||||||
model.model.half() if half else model.model.float()
|
|
||||||
|
|
||||||
# Dataloader
|
# Dataloader
|
||||||
|
bs = 1 # batch_size
|
||||||
if webcam:
|
if webcam:
|
||||||
view_img = check_imshow()
|
view_img = check_imshow(warn=True)
|
||||||
cudnn.benchmark = True # set True to speed up constant image size inference
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||||
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
|
bs = len(dataset)
|
||||||
bs = len(dataset) # batch_size
|
elif screenshot:
|
||||||
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||||
else:
|
else:
|
||||||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||||
bs = 1 # batch_size
|
|
||||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||||
|
|
||||||
# Run inference
|
# Run inference
|
||||||
if pt and device.type != 'cpu':
|
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
||||||
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
|
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
||||||
dt, seen = [0.0, 0.0, 0.0], 0
|
|
||||||
for path, im, im0s, vid_cap, s in dataset:
|
for path, im, im0s, vid_cap, s in dataset:
|
||||||
t1 = time_sync()
|
with dt[0]:
|
||||||
im = torch.from_numpy(im).to(device)
|
im = torch.from_numpy(im).to(model.device)
|
||||||
im = im.half() if half else im.float() # uint8 to fp16/32
|
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||||
if len(im.shape) == 3:
|
if len(im.shape) == 3:
|
||||||
im = im[None] # expand for batch dim
|
im = im[None] # expand for batch dim
|
||||||
t2 = time_sync()
|
|
||||||
dt[0] += t2 - t1
|
|
||||||
|
|
||||||
# Inference
|
# Inference
|
||||||
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
with dt[1]:
|
||||||
pred = model(im, augment=augment, visualize=visualize)
|
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
||||||
t3 = time_sync()
|
pred = model(im, augment=augment, visualize=visualize)
|
||||||
dt[1] += t3 - t2
|
|
||||||
|
|
||||||
# NMS
|
# NMS
|
||||||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
with dt[2]:
|
||||||
dt[2] += time_sync() - t3
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
||||||
|
|
||||||
# Second-stage classifier (optional)
|
# Second-stage classifier (optional)
|
||||||
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
||||||
@ -141,11 +152,11 @@ def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
|
|||||||
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
||||||
if len(det):
|
if len(det):
|
||||||
# Rescale boxes from img_size to im0 size
|
# Rescale boxes from img_size to im0 size
|
||||||
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
||||||
|
|
||||||
# Print results
|
# Print results
|
||||||
for c in det[:, -1].unique():
|
for c in det[:, 5].unique():
|
||||||
n = (det[:, -1] == c).sum() # detections per class
|
n = (det[:, 5] == c).sum() # detections per class
|
||||||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||||
|
|
||||||
# Write results
|
# Write results
|
||||||
@ -153,22 +164,23 @@ def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
|
|||||||
if save_txt: # Write to file
|
if save_txt: # Write to file
|
||||||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||||
with open(txt_path + '.txt', 'a') as f:
|
with open(f'{txt_path}.txt', 'a') as f:
|
||||||
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||||
|
|
||||||
if save_img or save_crop or view_img: # Add bbox to image
|
if save_img or save_crop or view_img: # Add bbox to image
|
||||||
c = int(cls) # integer class
|
c = int(cls) # integer class
|
||||||
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
||||||
annotator.box_label(xyxy, label, color=colors(c, True))
|
annotator.box_label(xyxy, label, color=colors(c, True))
|
||||||
if save_crop:
|
if save_crop:
|
||||||
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
||||||
|
|
||||||
# Print time (inference-only)
|
|
||||||
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
|
|
||||||
|
|
||||||
# Stream results
|
# Stream results
|
||||||
im0 = annotator.result()
|
im0 = annotator.result()
|
||||||
if view_img:
|
if view_img:
|
||||||
|
if platform.system() == 'Linux' and p not in windows:
|
||||||
|
windows.append(p)
|
||||||
|
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||||
|
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||||
cv2.imshow(str(p), im0)
|
cv2.imshow(str(p), im0)
|
||||||
cv2.waitKey(1) # 1 millisecond
|
cv2.waitKey(1) # 1 millisecond
|
||||||
|
|
||||||
@ -187,24 +199,32 @@ def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
|
|||||||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
else: # stream
|
else: # stream
|
||||||
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||||
save_path += '.mp4'
|
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
||||||
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||||
vid_writer[i].write(im0)
|
vid_writer[i].write(im0)
|
||||||
|
|
||||||
|
# Print time (inference-only)
|
||||||
|
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
||||||
|
|
||||||
# Print results
|
# Print results
|
||||||
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
||||||
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
||||||
if save_txt or save_img:
|
if save_txt or save_img:
|
||||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||||
if update:
|
if update:
|
||||||
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
|
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
||||||
|
|
||||||
|
|
||||||
def parse_opt():
|
def parse_opt():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov3.pt', help='model path(s)')
|
parser.add_argument('--weights',
|
||||||
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
|
nargs='+',
|
||||||
|
type=str,
|
||||||
|
default=ROOT / 'yolov3-tiny.pt',
|
||||||
|
help='model path or triton URL')
|
||||||
|
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
||||||
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
||||||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
||||||
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
||||||
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
||||||
@ -228,9 +248,10 @@ def parse_opt():
|
|||||||
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
||||||
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
||||||
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
||||||
|
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
||||||
opt = parser.parse_args()
|
opt = parser.parse_args()
|
||||||
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||||
print_args(FILE.stem, opt)
|
print_args(vars(opt))
|
||||||
return opt
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
798
export.py
798
export.py
@ -1,287 +1,538 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
"""
|
"""
|
||||||
Export a PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
|
Export a YOLOv3 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
||||||
TensorFlow exports authored by https://github.com/zldrobit
|
|
||||||
|
Format | `export.py --include` | Model
|
||||||
|
--- | --- | ---
|
||||||
|
PyTorch | - | yolov5s.pt
|
||||||
|
TorchScript | `torchscript` | yolov5s.torchscript
|
||||||
|
ONNX | `onnx` | yolov5s.onnx
|
||||||
|
OpenVINO | `openvino` | yolov5s_openvino_model/
|
||||||
|
TensorRT | `engine` | yolov5s.engine
|
||||||
|
CoreML | `coreml` | yolov5s.mlmodel
|
||||||
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
||||||
|
TensorFlow GraphDef | `pb` | yolov5s.pb
|
||||||
|
TensorFlow Lite | `tflite` | yolov5s.tflite
|
||||||
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
||||||
|
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
||||||
|
PaddlePaddle | `paddle` | yolov5s_paddle_model/
|
||||||
|
|
||||||
|
Requirements:
|
||||||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
||||||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
$ python path/to/export.py --weights yolov3.pt --include torchscript onnx coreml saved_model pb tflite tfjs
|
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
|
||||||
|
|
||||||
Inference:
|
Inference:
|
||||||
$ python path/to/detect.py --weights yolov3.pt
|
$ python detect.py --weights yolov5s.pt # PyTorch
|
||||||
yolov3.onnx (must export with --dynamic)
|
yolov5s.torchscript # TorchScript
|
||||||
yolov3_saved_model
|
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||||
yolov3.pb
|
yolov5s_openvino_model # OpenVINO
|
||||||
yolov3.tflite
|
yolov5s.engine # TensorRT
|
||||||
|
yolov5s.mlmodel # CoreML (macOS-only)
|
||||||
|
yolov5s_saved_model # TensorFlow SavedModel
|
||||||
|
yolov5s.pb # TensorFlow GraphDef
|
||||||
|
yolov5s.tflite # TensorFlow Lite
|
||||||
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
||||||
|
yolov5s_paddle_model # PaddlePaddle
|
||||||
|
|
||||||
TensorFlow.js:
|
TensorFlow.js:
|
||||||
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
||||||
$ npm install
|
$ npm install
|
||||||
$ ln -s ../../yolov5/yolov3_web_model public/yolov3_web_model
|
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
||||||
$ npm start
|
$ npm start
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import contextlib
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
|
import platform
|
||||||
|
import re
|
||||||
import subprocess
|
import subprocess
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
|
||||||
from torch.utils.mobile_optimizer import optimize_for_mobile
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||||||
|
|
||||||
FILE = Path(__file__).resolve()
|
FILE = Path(__file__).resolve()
|
||||||
ROOT = FILE.parents[0] # root directory
|
ROOT = FILE.parents[0] # YOLOv3 root directory
|
||||||
if str(ROOT) not in sys.path:
|
if str(ROOT) not in sys.path:
|
||||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
if platform.system() != 'Windows':
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
from models.common import Conv
|
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from models.yolo import Detect
|
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
|
||||||
from utils.activations import SiLU
|
from utils.dataloaders import LoadImages
|
||||||
from utils.datasets import LoadImages
|
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
|
||||||
from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, colorstr, file_size, print_args,
|
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
|
||||||
url2file)
|
from utils.torch_utils import select_device, smart_inference_mode
|
||||||
from utils.torch_utils import select_device
|
|
||||||
|
MACOS = platform.system() == 'Darwin' # macOS environment
|
||||||
|
|
||||||
|
|
||||||
|
def export_formats():
|
||||||
|
# YOLOv3 export formats
|
||||||
|
x = [
|
||||||
|
['PyTorch', '-', '.pt', True, True],
|
||||||
|
['TorchScript', 'torchscript', '.torchscript', True, True],
|
||||||
|
['ONNX', 'onnx', '.onnx', True, True],
|
||||||
|
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
||||||
|
['TensorRT', 'engine', '.engine', False, True],
|
||||||
|
['CoreML', 'coreml', '.mlmodel', True, False],
|
||||||
|
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
|
||||||
|
['TensorFlow GraphDef', 'pb', '.pb', True, True],
|
||||||
|
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
||||||
|
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
|
||||||
|
['TensorFlow.js', 'tfjs', '_web_model', False, False],
|
||||||
|
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
|
||||||
|
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
||||||
|
|
||||||
|
|
||||||
|
def try_export(inner_func):
|
||||||
|
# YOLOv3 export decorator, i..e @try_export
|
||||||
|
inner_args = get_default_args(inner_func)
|
||||||
|
|
||||||
|
def outer_func(*args, **kwargs):
|
||||||
|
prefix = inner_args['prefix']
|
||||||
|
try:
|
||||||
|
with Profile() as dt:
|
||||||
|
f, model = inner_func(*args, **kwargs)
|
||||||
|
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
|
||||||
|
return f, model
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
return outer_func
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
||||||
# TorchScript model export
|
# YOLOv3 TorchScript model export
|
||||||
|
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
||||||
|
f = file.with_suffix('.torchscript')
|
||||||
|
|
||||||
|
ts = torch.jit.trace(model, im, strict=False)
|
||||||
|
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
||||||
|
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
||||||
|
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
||||||
|
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
||||||
|
else:
|
||||||
|
ts.save(str(f), _extra_files=extra_files)
|
||||||
|
return f, None
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
|
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
|
||||||
|
# YOLOv3 ONNX export
|
||||||
|
check_requirements('onnx>=1.12.0')
|
||||||
|
import onnx
|
||||||
|
|
||||||
|
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
||||||
|
f = file.with_suffix('.onnx')
|
||||||
|
|
||||||
|
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
|
||||||
|
if dynamic:
|
||||||
|
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
|
||||||
|
if isinstance(model, SegmentationModel):
|
||||||
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
||||||
|
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
|
||||||
|
elif isinstance(model, DetectionModel):
|
||||||
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
||||||
|
|
||||||
|
torch.onnx.export(
|
||||||
|
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
||||||
|
im.cpu() if dynamic else im,
|
||||||
|
f,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset,
|
||||||
|
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
||||||
|
input_names=['images'],
|
||||||
|
output_names=output_names,
|
||||||
|
dynamic_axes=dynamic or None)
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
model_onnx = onnx.load(f) # load onnx model
|
||||||
|
onnx.checker.check_model(model_onnx) # check onnx model
|
||||||
|
|
||||||
|
# Metadata
|
||||||
|
d = {'stride': int(max(model.stride)), 'names': model.names}
|
||||||
|
for k, v in d.items():
|
||||||
|
meta = model_onnx.metadata_props.add()
|
||||||
|
meta.key, meta.value = k, str(v)
|
||||||
|
onnx.save(model_onnx, f)
|
||||||
|
|
||||||
|
# Simplify
|
||||||
|
if simplify:
|
||||||
|
try:
|
||||||
|
cuda = torch.cuda.is_available()
|
||||||
|
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
||||||
|
import onnxsim
|
||||||
|
|
||||||
|
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
||||||
|
model_onnx, check = onnxsim.simplify(model_onnx)
|
||||||
|
assert check, 'assert check failed'
|
||||||
|
onnx.save(model_onnx, f)
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
||||||
|
return f, model_onnx
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
|
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
|
||||||
|
# YOLOv3 OpenVINO export
|
||||||
|
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||||||
|
import openvino.inference_engine as ie
|
||||||
|
|
||||||
|
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
||||||
|
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
||||||
|
|
||||||
|
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
||||||
|
subprocess.run(cmd.split(), check=True, env=os.environ) # export
|
||||||
|
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
||||||
|
return f, None
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
|
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
|
||||||
|
# YOLOv3 Paddle export
|
||||||
|
check_requirements(('paddlepaddle', 'x2paddle'))
|
||||||
|
import x2paddle
|
||||||
|
from x2paddle.convert import pytorch2paddle
|
||||||
|
|
||||||
|
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
|
||||||
|
f = str(file).replace('.pt', f'_paddle_model{os.sep}')
|
||||||
|
|
||||||
|
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
|
||||||
|
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
||||||
|
return f, None
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
|
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
||||||
|
# YOLOv3 CoreML export
|
||||||
|
check_requirements('coremltools')
|
||||||
|
import coremltools as ct
|
||||||
|
|
||||||
|
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||||||
|
f = file.with_suffix('.mlmodel')
|
||||||
|
|
||||||
|
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
||||||
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
||||||
|
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
||||||
|
if bits < 32:
|
||||||
|
if MACOS: # quantization only supported on macOS
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
||||||
|
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
||||||
|
else:
|
||||||
|
print(f'{prefix} quantization only supported on macOS, skipping...')
|
||||||
|
ct_model.save(f)
|
||||||
|
return f, ct_model
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
|
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
||||||
|
# YOLOv3 TensorRT export https://developer.nvidia.com/tensorrt
|
||||||
|
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
||||||
try:
|
try:
|
||||||
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
import tensorrt as trt
|
||||||
f = file.with_suffix('.torchscript.pt')
|
except Exception:
|
||||||
|
if platform.system() == 'Linux':
|
||||||
|
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
||||||
|
import tensorrt as trt
|
||||||
|
|
||||||
ts = torch.jit.trace(model, im, strict=False)
|
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
||||||
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
grid = model.model[-1].anchor_grid
|
||||||
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
||||||
(optimize_for_mobile(ts) if optimize else ts).save(f, _extra_files=extra_files)
|
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
||||||
|
model.model[-1].anchor_grid = grid
|
||||||
|
else: # TensorRT >= 8
|
||||||
|
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
||||||
|
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
||||||
|
onnx = file.with_suffix('.onnx')
|
||||||
|
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
||||||
except Exception as e:
|
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
||||||
LOGGER.info(f'{prefix} export failure: {e}')
|
f = file.with_suffix('.engine') # TensorRT engine file
|
||||||
|
logger = trt.Logger(trt.Logger.INFO)
|
||||||
|
if verbose:
|
||||||
|
logger.min_severity = trt.Logger.Severity.VERBOSE
|
||||||
|
|
||||||
|
builder = trt.Builder(logger)
|
||||||
|
config = builder.create_builder_config()
|
||||||
|
config.max_workspace_size = workspace * 1 << 30
|
||||||
|
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
||||||
|
|
||||||
|
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
||||||
|
network = builder.create_network(flag)
|
||||||
|
parser = trt.OnnxParser(network, logger)
|
||||||
|
if not parser.parse_from_file(str(onnx)):
|
||||||
|
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
||||||
|
|
||||||
|
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
||||||
|
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
||||||
|
for inp in inputs:
|
||||||
|
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
||||||
|
for out in outputs:
|
||||||
|
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
||||||
|
|
||||||
|
if dynamic:
|
||||||
|
if im.shape[0] <= 1:
|
||||||
|
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
|
||||||
|
profile = builder.create_optimization_profile()
|
||||||
|
for inp in inputs:
|
||||||
|
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
||||||
|
config.add_optimization_profile(profile)
|
||||||
|
|
||||||
|
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
|
||||||
|
if builder.platform_has_fast_fp16 and half:
|
||||||
|
config.set_flag(trt.BuilderFlag.FP16)
|
||||||
|
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
||||||
|
t.write(engine.serialize())
|
||||||
|
return f, None
|
||||||
|
|
||||||
|
|
||||||
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
@try_export
|
||||||
# ONNX export
|
def export_saved_model(model,
|
||||||
try:
|
im,
|
||||||
check_requirements(('onnx',))
|
file,
|
||||||
import onnx
|
dynamic,
|
||||||
|
tf_nms=False,
|
||||||
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
agnostic_nms=False,
|
||||||
f = file.with_suffix('.onnx')
|
topk_per_class=100,
|
||||||
|
topk_all=100,
|
||||||
torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
|
iou_thres=0.45,
|
||||||
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
conf_thres=0.25,
|
||||||
do_constant_folding=not train,
|
keras=False,
|
||||||
input_names=['images'],
|
prefix=colorstr('TensorFlow SavedModel:')):
|
||||||
output_names=['output'],
|
# YOLOv3 TensorFlow SavedModel export
|
||||||
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
|
||||||
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
|
||||||
} if dynamic else None)
|
|
||||||
|
|
||||||
# Checks
|
|
||||||
model_onnx = onnx.load(f) # load onnx model
|
|
||||||
onnx.checker.check_model(model_onnx) # check onnx model
|
|
||||||
# LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print
|
|
||||||
|
|
||||||
# Simplify
|
|
||||||
if simplify:
|
|
||||||
try:
|
|
||||||
check_requirements(('onnx-simplifier',))
|
|
||||||
import onnxsim
|
|
||||||
|
|
||||||
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
|
||||||
model_onnx, check = onnxsim.simplify(
|
|
||||||
model_onnx,
|
|
||||||
dynamic_input_shape=dynamic,
|
|
||||||
input_shapes={'images': list(im.shape)} if dynamic else None)
|
|
||||||
assert check, 'assert check failed'
|
|
||||||
onnx.save(model_onnx, f)
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
LOGGER.info(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
|
||||||
# CoreML export
|
|
||||||
ct_model = None
|
|
||||||
try:
|
|
||||||
check_requirements(('coremltools',))
|
|
||||||
import coremltools as ct
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
|
||||||
f = file.with_suffix('.mlmodel')
|
|
||||||
|
|
||||||
model.train() # CoreML exports should be placed in model.train() mode
|
|
||||||
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
|
||||||
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
|
||||||
ct_model.save(f)
|
|
||||||
|
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
return ct_model
|
|
||||||
|
|
||||||
|
|
||||||
def export_saved_model(model, im, file, dynamic,
|
|
||||||
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
|
||||||
conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
|
|
||||||
# TensorFlow saved_model export
|
|
||||||
keras_model = None
|
|
||||||
try:
|
try:
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow import keras
|
except Exception:
|
||||||
|
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||||||
|
|
||||||
from models.tf import TFDetect, TFModel
|
from models.tf import TFModel
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||||
f = str(file).replace('.pt', '_saved_model')
|
f = str(file).replace('.pt', '_saved_model')
|
||||||
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||||||
|
|
||||||
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||||||
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
|
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
||||||
y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||||||
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
||||||
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||||||
keras_model = keras.Model(inputs=inputs, outputs=outputs)
|
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
||||||
keras_model.trainable = False
|
keras_model.trainable = False
|
||||||
keras_model.summary()
|
keras_model.summary()
|
||||||
|
if keras:
|
||||||
keras_model.save(f, save_format='tf')
|
keras_model.save(f, save_format='tf')
|
||||||
|
else:
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
return keras_model
|
|
||||||
|
|
||||||
|
|
||||||
def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
|
|
||||||
# TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
|
||||||
try:
|
|
||||||
import tensorflow as tf
|
|
||||||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
|
||||||
f = file.with_suffix('.pb')
|
|
||||||
|
|
||||||
m = tf.function(lambda x: keras_model(x)) # full model
|
m = tf.function(lambda x: keras_model(x)) # full model
|
||||||
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
m = m.get_concrete_function(spec)
|
||||||
frozen_func = convert_variables_to_constants_v2(m)
|
frozen_func = convert_variables_to_constants_v2(m)
|
||||||
frozen_func.graph.as_graph_def()
|
tfm = tf.Module()
|
||||||
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
|
||||||
|
tfm.__call__(im)
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
tf.saved_model.save(tfm,
|
||||||
except Exception as e:
|
f,
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
|
||||||
|
tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
||||||
|
return f, keras_model
|
||||||
|
|
||||||
|
|
||||||
def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
|
@try_export
|
||||||
# TensorFlow Lite export
|
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
||||||
try:
|
# YOLOv3 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||||||
|
|
||||||
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||||
|
f = file.with_suffix('.pb')
|
||||||
|
|
||||||
|
m = tf.function(lambda x: keras_model(x)) # full model
|
||||||
|
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
||||||
|
frozen_func = convert_variables_to_constants_v2(m)
|
||||||
|
frozen_func.graph.as_graph_def()
|
||||||
|
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
||||||
|
return f, None
|
||||||
|
|
||||||
|
|
||||||
|
@try_export
|
||||||
|
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
||||||
|
# YOLOv3 TensorFlow Lite export
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||||
|
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||||||
|
f = str(file).replace('.pt', '-fp16.tflite')
|
||||||
|
|
||||||
|
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
||||||
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
||||||
|
converter.target_spec.supported_types = [tf.float16]
|
||||||
|
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||||
|
if int8:
|
||||||
from models.tf import representative_dataset_gen
|
from models.tf import representative_dataset_gen
|
||||||
|
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
|
||||||
|
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
||||||
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
||||||
|
converter.target_spec.supported_types = []
|
||||||
|
converter.inference_input_type = tf.uint8 # or tf.int8
|
||||||
|
converter.inference_output_type = tf.uint8 # or tf.int8
|
||||||
|
converter.experimental_new_quantizer = True
|
||||||
|
f = str(file).replace('.pt', '-int8.tflite')
|
||||||
|
if nms or agnostic_nms:
|
||||||
|
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
tflite_model = converter.convert()
|
||||||
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
open(f, "wb").write(tflite_model)
|
||||||
f = str(file).replace('.pt', '-fp16.tflite')
|
return f, None
|
||||||
|
|
||||||
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
|
||||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
|
||||||
converter.target_spec.supported_types = [tf.float16]
|
|
||||||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
|
||||||
if int8:
|
|
||||||
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
|
||||||
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
|
|
||||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
|
||||||
converter.target_spec.supported_types = []
|
|
||||||
converter.inference_input_type = tf.uint8 # or tf.int8
|
|
||||||
converter.inference_output_type = tf.uint8 # or tf.int8
|
|
||||||
converter.experimental_new_quantizer = False
|
|
||||||
f = str(file).replace('.pt', '-int8.tflite')
|
|
||||||
|
|
||||||
tflite_model = converter.convert()
|
|
||||||
open(f, "wb").write(tflite_model)
|
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
@try_export
|
||||||
# TensorFlow.js export
|
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
||||||
try:
|
# YOLOv3 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
||||||
check_requirements(('tensorflowjs',))
|
cmd = 'edgetpu_compiler --version'
|
||||||
import re
|
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
||||||
|
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
||||||
|
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
||||||
|
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
||||||
|
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
||||||
|
for c in (
|
||||||
|
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
||||||
|
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
||||||
|
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
||||||
|
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
||||||
|
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
||||||
|
|
||||||
import tensorflowjs as tfjs
|
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
||||||
|
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
||||||
|
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
|
||||||
f = str(file).replace('.pt', '_web_model') # js dir
|
subprocess.run(cmd.split(), check=True)
|
||||||
f_pb = file.with_suffix('.pb') # *.pb path
|
return f, None
|
||||||
f_json = f + '/model.json' # *.json path
|
|
||||||
|
|
||||||
cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
|
|
||||||
f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
|
|
||||||
subprocess.run(cmd, shell=True)
|
|
||||||
|
|
||||||
json = open(f_json).read()
|
|
||||||
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
|
||||||
subst = re.sub(
|
|
||||||
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
|
||||||
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
|
||||||
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
|
||||||
r'"Identity.?.?": {"name": "Identity.?.?"}}}',
|
|
||||||
r'{"outputs": {"Identity": {"name": "Identity"}, '
|
|
||||||
r'"Identity_1": {"name": "Identity_1"}, '
|
|
||||||
r'"Identity_2": {"name": "Identity_2"}, '
|
|
||||||
r'"Identity_3": {"name": "Identity_3"}}}',
|
|
||||||
json)
|
|
||||||
j.write(subst)
|
|
||||||
|
|
||||||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'\n{prefix} export failure: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@try_export
|
||||||
def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')):
|
||||||
weights=ROOT / 'yolov3.pt', # weights path
|
# YOLOv3 TensorFlow.js export
|
||||||
|
check_requirements('tensorflowjs')
|
||||||
|
import tensorflowjs as tfjs
|
||||||
|
|
||||||
|
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
||||||
|
f = str(file).replace('.pt', '_web_model') # js dir
|
||||||
|
f_pb = file.with_suffix('.pb') # *.pb path
|
||||||
|
f_json = f'{f}/model.json' # *.json path
|
||||||
|
|
||||||
|
int8_export = ' --quantize_uint8 ' if int8 else ''
|
||||||
|
|
||||||
|
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model {int8_export}' \
|
||||||
|
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
||||||
|
subprocess.run(cmd.split())
|
||||||
|
|
||||||
|
json = Path(f_json).read_text()
|
||||||
|
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
||||||
|
subst = re.sub(
|
||||||
|
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
||||||
|
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
||||||
|
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
||||||
|
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
||||||
|
r'"Identity_1": {"name": "Identity_1"}, '
|
||||||
|
r'"Identity_2": {"name": "Identity_2"}, '
|
||||||
|
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
||||||
|
j.write(subst)
|
||||||
|
return f, None
|
||||||
|
|
||||||
|
|
||||||
|
def add_tflite_metadata(file, metadata, num_outputs):
|
||||||
|
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
||||||
|
with contextlib.suppress(ImportError):
|
||||||
|
# check_requirements('tflite_support')
|
||||||
|
from tflite_support import flatbuffers
|
||||||
|
from tflite_support import metadata as _metadata
|
||||||
|
from tflite_support import metadata_schema_py_generated as _metadata_fb
|
||||||
|
|
||||||
|
tmp_file = Path('/tmp/meta.txt')
|
||||||
|
with open(tmp_file, 'w') as meta_f:
|
||||||
|
meta_f.write(str(metadata))
|
||||||
|
|
||||||
|
model_meta = _metadata_fb.ModelMetadataT()
|
||||||
|
label_file = _metadata_fb.AssociatedFileT()
|
||||||
|
label_file.name = tmp_file.name
|
||||||
|
model_meta.associatedFiles = [label_file]
|
||||||
|
|
||||||
|
subgraph = _metadata_fb.SubGraphMetadataT()
|
||||||
|
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
||||||
|
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
|
||||||
|
model_meta.subgraphMetadata = [subgraph]
|
||||||
|
|
||||||
|
b = flatbuffers.Builder(0)
|
||||||
|
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
|
||||||
|
metadata_buf = b.Output()
|
||||||
|
|
||||||
|
populator = _metadata.MetadataPopulator.with_model_file(file)
|
||||||
|
populator.load_metadata_buffer(metadata_buf)
|
||||||
|
populator.load_associated_files([str(tmp_file)])
|
||||||
|
populator.populate()
|
||||||
|
tmp_file.unlink()
|
||||||
|
|
||||||
|
|
||||||
|
@smart_inference_mode()
|
||||||
|
def run(
|
||||||
|
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
||||||
|
weights=ROOT / 'yolov5s.pt', # weights path
|
||||||
imgsz=(640, 640), # image (height, width)
|
imgsz=(640, 640), # image (height, width)
|
||||||
batch_size=1, # batch size
|
batch_size=1, # batch size
|
||||||
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
include=('torchscript', 'onnx', 'coreml'), # include formats
|
include=('torchscript', 'onnx'), # include formats
|
||||||
half=False, # FP16 half-precision export
|
half=False, # FP16 half-precision export
|
||||||
inplace=False, # set Detect() inplace=True
|
inplace=False, # set YOLOv3 Detect() inplace=True
|
||||||
train=False, # model.train() mode
|
keras=False, # use Keras
|
||||||
optimize=False, # TorchScript: optimize for mobile
|
optimize=False, # TorchScript: optimize for mobile
|
||||||
int8=False, # CoreML/TF INT8 quantization
|
int8=False, # CoreML/TF INT8 quantization
|
||||||
dynamic=False, # ONNX/TF: dynamic axes
|
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
|
||||||
simplify=False, # ONNX: simplify model
|
simplify=False, # ONNX: simplify model
|
||||||
opset=12, # ONNX: opset version
|
opset=12, # ONNX: opset version
|
||||||
|
verbose=False, # TensorRT: verbose log
|
||||||
|
workspace=4, # TensorRT: workspace size (GB)
|
||||||
|
nms=False, # TF: add NMS to model
|
||||||
|
agnostic_nms=False, # TF: add agnostic NMS to model
|
||||||
topk_per_class=100, # TF.js NMS: topk per class to keep
|
topk_per_class=100, # TF.js NMS: topk per class to keep
|
||||||
topk_all=100, # TF.js NMS: topk for all classes to keep
|
topk_all=100, # TF.js NMS: topk for all classes to keep
|
||||||
iou_thres=0.45, # TF.js NMS: IoU threshold
|
iou_thres=0.45, # TF.js NMS: IoU threshold
|
||||||
conf_thres=0.25 # TF.js NMS: confidence threshold
|
conf_thres=0.25, # TF.js NMS: confidence threshold
|
||||||
):
|
):
|
||||||
t = time.time()
|
t = time.time()
|
||||||
include = [x.lower() for x in include]
|
include = [x.lower() for x in include] # to lowercase
|
||||||
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
|
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
|
||||||
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
flags = [x in include for x in fmts]
|
||||||
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)
|
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
|
||||||
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
||||||
|
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
||||||
|
|
||||||
# Load PyTorch model
|
# Load PyTorch model
|
||||||
device = select_device(device)
|
device = select_device(device)
|
||||||
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
if half:
|
||||||
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
|
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
||||||
nc, names = model.nc, model.names # number of classes, class names
|
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
|
||||||
|
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
||||||
|
if optimize:
|
||||||
|
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
||||||
|
|
||||||
# Input
|
# Input
|
||||||
gs = int(max(model.stride)) # grid size (max stride)
|
gs = int(max(model.stride)) # grid size (max stride)
|
||||||
@ -289,79 +540,114 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
|||||||
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
||||||
|
|
||||||
# Update model
|
# Update model
|
||||||
if half:
|
model.eval()
|
||||||
im, model = im.half(), model.half() # to FP16
|
|
||||||
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
|
||||||
for k, m in model.named_modules():
|
for k, m in model.named_modules():
|
||||||
if isinstance(m, Conv): # assign export-friendly activations
|
if isinstance(m, Detect):
|
||||||
if isinstance(m.act, nn.SiLU):
|
|
||||||
m.act = SiLU()
|
|
||||||
elif isinstance(m, Detect):
|
|
||||||
m.inplace = inplace
|
m.inplace = inplace
|
||||||
m.onnx_dynamic = dynamic
|
m.dynamic = dynamic
|
||||||
# m.forward = m.forward_export # assign forward (optional)
|
m.export = True
|
||||||
|
|
||||||
for _ in range(2):
|
for _ in range(2):
|
||||||
y = model(im) # dry runs
|
y = model(im) # dry runs
|
||||||
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
|
if half and not coreml:
|
||||||
|
im, model = im.half(), model.half() # to FP16
|
||||||
|
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
||||||
|
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
||||||
|
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
||||||
|
|
||||||
# Exports
|
# Exports
|
||||||
if 'torchscript' in include:
|
f = [''] * len(fmts) # exported filenames
|
||||||
export_torchscript(model, im, file, optimize)
|
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
||||||
if 'onnx' in include:
|
if jit: # TorchScript
|
||||||
export_onnx(model, im, file, opset, train, dynamic, simplify)
|
f[0], _ = export_torchscript(model, im, file, optimize)
|
||||||
if 'coreml' in include:
|
if engine: # TensorRT required before ONNX
|
||||||
export_coreml(model, im, file)
|
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
||||||
|
if onnx or xml: # OpenVINO requires ONNX
|
||||||
# TensorFlow Exports
|
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
|
||||||
if any(tf_exports):
|
if xml: # OpenVINO
|
||||||
pb, tflite, tfjs = tf_exports[1:]
|
f[3], _ = export_openvino(file, metadata, half)
|
||||||
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
if coreml: # CoreML
|
||||||
model = export_saved_model(model.cpu(), im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs,
|
f[4], _ = export_coreml(model, im, file, int8, half)
|
||||||
topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres,
|
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
||||||
iou_thres=iou_thres) # keras model
|
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
||||||
|
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
|
||||||
|
f[5], s_model = export_saved_model(model.cpu(),
|
||||||
|
im,
|
||||||
|
file,
|
||||||
|
dynamic,
|
||||||
|
tf_nms=nms or agnostic_nms or tfjs,
|
||||||
|
agnostic_nms=agnostic_nms or tfjs,
|
||||||
|
topk_per_class=topk_per_class,
|
||||||
|
topk_all=topk_all,
|
||||||
|
iou_thres=iou_thres,
|
||||||
|
conf_thres=conf_thres,
|
||||||
|
keras=keras)
|
||||||
if pb or tfjs: # pb prerequisite to tfjs
|
if pb or tfjs: # pb prerequisite to tfjs
|
||||||
export_pb(model, im, file)
|
f[6], _ = export_pb(s_model, file)
|
||||||
if tflite:
|
if tflite or edgetpu:
|
||||||
export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
|
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
||||||
|
if edgetpu:
|
||||||
|
f[8], _ = export_edgetpu(file)
|
||||||
|
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
|
||||||
if tfjs:
|
if tfjs:
|
||||||
export_tfjs(model, im, file)
|
f[9], _ = export_tfjs(file, int8)
|
||||||
|
if paddle: # PaddlePaddle
|
||||||
|
f[10], _ = export_paddle(model, im, file, metadata)
|
||||||
|
|
||||||
# Finish
|
# Finish
|
||||||
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
|
f = [str(x) for x in f if x] # filter out '' and None
|
||||||
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
if any(f):
|
||||||
f'\nVisualize with https://netron.app')
|
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
||||||
|
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
|
||||||
|
dir = Path('segment' if seg else 'classify' if cls else '')
|
||||||
|
h = '--half' if half else '' # --half FP16 inference arg
|
||||||
|
s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
|
||||||
|
"# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
|
||||||
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
||||||
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||||||
|
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
|
||||||
|
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
|
||||||
|
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
|
||||||
|
f"\nVisualize: https://netron.app")
|
||||||
|
return f # return list of exported files/dirs
|
||||||
|
|
||||||
|
|
||||||
def parse_opt():
|
def parse_opt(known=False):
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||||||
parser.add_argument('--weights', type=str, default=ROOT / 'yolov3.pt', help='weights path')
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov3-tiny.pt', help='model.pt path(s)')
|
||||||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
||||||
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||||
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
||||||
parser.add_argument('--inplace', action='store_true', help='set YOLOv3 Detect() inplace=True')
|
parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
|
||||||
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
parser.add_argument('--keras', action='store_true', help='TF: use Keras')
|
||||||
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
||||||
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
||||||
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
|
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
|
||||||
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
||||||
parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
|
parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
|
||||||
|
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
|
||||||
|
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
|
||||||
|
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
|
||||||
|
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
|
||||||
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
||||||
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
|
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
|
||||||
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
|
||||||
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
||||||
parser.add_argument('--include', nargs='+',
|
parser.add_argument(
|
||||||
default=['torchscript', 'onnx'],
|
'--include',
|
||||||
help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
|
nargs='+',
|
||||||
opt = parser.parse_args()
|
default=['torchscript'],
|
||||||
print_args(FILE.stem, opt)
|
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
|
||||||
|
opt = parser.parse_known_args()[0] if known else parser.parse_args()
|
||||||
|
print_args(vars(opt))
|
||||||
return opt
|
return opt
|
||||||
|
|
||||||
|
|
||||||
def main(opt):
|
def main(opt):
|
||||||
run(**vars(opt))
|
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
|
||||||
|
run(**vars(opt))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
154
hubconf.py
154
hubconf.py
@ -1,52 +1,66 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
"""
|
"""
|
||||||
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
|
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
import torch
|
import torch
|
||||||
model = torch.hub.load('ultralytics/yolov3', 'yolov3')
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
|
||||||
|
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
|
||||||
|
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
|
||||||
|
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||||
"""Creates a specified model
|
"""Creates or loads a YOLOv3 model
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
name (str): name of model, i.e. 'yolov3'
|
name (str): model name 'yolov5s' or path 'path/to/best.pt'
|
||||||
pretrained (bool): load pretrained weights into the model
|
pretrained (bool): load pretrained weights into the model
|
||||||
channels (int): number of input channels
|
channels (int): number of input channels
|
||||||
classes (int): number of model classes
|
classes (int): number of model classes
|
||||||
autoshape (bool): apply .autoshape() wrapper to model
|
autoshape (bool): apply YOLOv3 .autoshape() wrapper to model
|
||||||
verbose (bool): print all information to screen
|
verbose (bool): print all information to screen
|
||||||
device (str, torch.device, None): device to use for model parameters
|
device (str, torch.device, None): device to use for model parameters
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
pytorch model
|
YOLOv3 model
|
||||||
"""
|
"""
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
from models.common import AutoShape, DetectMultiBackend
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from models.yolo import Model
|
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
|
||||||
from utils.downloads import attempt_download
|
from utils.downloads import attempt_download
|
||||||
from utils.general import check_requirements, intersect_dicts, set_logging
|
from utils.general import LOGGER, check_requirements, intersect_dicts, logging
|
||||||
from utils.torch_utils import select_device
|
from utils.torch_utils import select_device
|
||||||
|
|
||||||
file = Path(__file__).resolve()
|
if not verbose:
|
||||||
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
|
LOGGER.setLevel(logging.WARNING)
|
||||||
set_logging(verbose=verbose)
|
check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
|
||||||
|
name = Path(name)
|
||||||
save_dir = Path('') if str(name).endswith('.pt') else file.parent
|
path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
|
||||||
path = (save_dir / name).with_suffix('.pt') # checkpoint path
|
|
||||||
try:
|
try:
|
||||||
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
|
device = select_device(device)
|
||||||
|
|
||||||
if pretrained and channels == 3 and classes == 80:
|
if pretrained and channels == 3 and classes == 80:
|
||||||
model = attempt_load(path, map_location=device) # download/load FP32 model
|
try:
|
||||||
|
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
|
||||||
|
if autoshape:
|
||||||
|
if model.pt and isinstance(model.model, ClassificationModel):
|
||||||
|
LOGGER.warning('WARNING ⚠️ YOLOv3 ClassificationModel is not yet AutoShape compatible. '
|
||||||
|
'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
|
||||||
|
elif model.pt and isinstance(model.model, SegmentationModel):
|
||||||
|
LOGGER.warning('WARNING ⚠️ YOLOv3 SegmentationModel is not yet AutoShape compatible. '
|
||||||
|
'You will not be able to run inference with this model.')
|
||||||
|
else:
|
||||||
|
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
|
||||||
|
except Exception:
|
||||||
|
model = attempt_load(path, device=device, fuse=False) # arbitrary model
|
||||||
else:
|
else:
|
||||||
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
|
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
|
||||||
model = Model(cfg, channels, classes) # create model
|
model = DetectionModel(cfg, channels, classes) # create model
|
||||||
if pretrained:
|
if pretrained:
|
||||||
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
||||||
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
||||||
@ -54,54 +68,102 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
|
|||||||
model.load_state_dict(csd, strict=False) # load
|
model.load_state_dict(csd, strict=False) # load
|
||||||
if len(ckpt['model'].names) == classes:
|
if len(ckpt['model'].names) == classes:
|
||||||
model.names = ckpt['model'].names # set class names attribute
|
model.names = ckpt['model'].names # set class names attribute
|
||||||
if autoshape:
|
if not verbose:
|
||||||
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
LOGGER.setLevel(logging.INFO) # reset to default
|
||||||
return model.to(device)
|
return model.to(device)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
||||||
s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
|
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
|
||||||
raise Exception(s) from e
|
raise Exception(s) from e
|
||||||
|
|
||||||
|
|
||||||
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
|
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
|
||||||
# custom or local model
|
# YOLOv3 custom or local model
|
||||||
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
|
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
|
||||||
|
|
||||||
|
|
||||||
def yolov3(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
# YOLOv3 model https://github.com/ultralytics/yolov3
|
# YOLOv3-nano model https://github.com/ultralytics/yolov5
|
||||||
return _create('yolov3', pretrained, channels, classes, autoshape, verbose, device)
|
return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
def yolov3_spp(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
# YOLOv3-SPP model https://github.com/ultralytics/yolov3
|
# YOLOv3-small model https://github.com/ultralytics/yolov5
|
||||||
return _create('yolov3-spp', pretrained, channels, classes, autoshape, verbose, device)
|
return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
def yolov3_tiny(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
# YOLOv3-tiny model https://github.com/ultralytics/yolov3
|
# YOLOv3-medium model https://github.com/ultralytics/yolov5
|
||||||
return _create('yolov3-tiny', pretrained, channels, classes, autoshape, verbose, device)
|
return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
|
# YOLOv3-large model https://github.com/ultralytics/yolov5
|
||||||
|
return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
|
# YOLOv3-xlarge model https://github.com/ultralytics/yolov5
|
||||||
|
return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
|
# YOLOv3-nano-P6 model https://github.com/ultralytics/yolov5
|
||||||
|
return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
|
# YOLOv3-small-P6 model https://github.com/ultralytics/yolov5
|
||||||
|
return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
|
# YOLOv3-medium-P6 model https://github.com/ultralytics/yolov5
|
||||||
|
return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
|
# YOLOv3-large-P6 model https://github.com/ultralytics/yolov5
|
||||||
|
return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||||
|
# YOLOv3-xlarge-P6 model https://github.com/ultralytics/yolov5
|
||||||
|
return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
model = _create(name='yolov3-tiny', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
|
import argparse
|
||||||
# model = custom(path='path/to/model.pt') # custom
|
|
||||||
|
|
||||||
# Verify inference
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
imgs = ['data/images/zidane.jpg', # filename
|
from utils.general import cv2, print_args
|
||||||
Path('data/images/zidane.jpg'), # Path
|
|
||||||
'https://ultralytics.com/images/zidane.jpg', # URI
|
|
||||||
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
|
||||||
Image.open('data/images/bus.jpg'), # PIL
|
|
||||||
np.zeros((320, 640, 3))] # numpy
|
|
||||||
|
|
||||||
results = model(imgs) # batched inference
|
# Argparser
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--model', type=str, default='yolov5s', help='model name')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
print_args(vars(opt))
|
||||||
|
|
||||||
|
# Model
|
||||||
|
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
|
||||||
|
# model = custom(path='path/to/model.pt') # custom
|
||||||
|
|
||||||
|
# Images
|
||||||
|
imgs = [
|
||||||
|
'data/images/zidane.jpg', # filename
|
||||||
|
Path('data/images/zidane.jpg'), # Path
|
||||||
|
'https://ultralytics.com/images/zidane.jpg', # URI
|
||||||
|
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
||||||
|
Image.open('data/images/bus.jpg'), # PIL
|
||||||
|
np.zeros((320, 640, 3))] # numpy
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
results = model(imgs, size=320) # batched inference
|
||||||
|
|
||||||
|
# Results
|
||||||
results.print()
|
results.print()
|
||||||
results.save()
|
results.save()
|
||||||
|
|||||||
716
models/common.py
716
models/common.py
@ -3,12 +3,17 @@
|
|||||||
Common modules
|
Common modules
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import ast
|
||||||
|
import contextlib
|
||||||
import json
|
import json
|
||||||
import math
|
import math
|
||||||
import platform
|
import platform
|
||||||
import warnings
|
import warnings
|
||||||
|
import zipfile
|
||||||
|
from collections import OrderedDict, namedtuple
|
||||||
from copy import copy
|
from copy import copy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -16,30 +21,37 @@ import pandas as pd
|
|||||||
import requests
|
import requests
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from IPython.display import display
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from torch.cuda import amp
|
from torch.cuda import amp
|
||||||
|
|
||||||
from utils.datasets import exif_transpose, letterbox
|
from utils import TryExcept
|
||||||
from utils.general import (LOGGER, check_requirements, check_suffix, colorstr, increment_path, make_divisible,
|
from utils.dataloaders import exif_transpose, letterbox
|
||||||
non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
|
from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
|
||||||
|
increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy,
|
||||||
|
xyxy2xywh, yaml_load)
|
||||||
from utils.plots import Annotator, colors, save_one_box
|
from utils.plots import Annotator, colors, save_one_box
|
||||||
from utils.torch_utils import time_sync
|
from utils.torch_utils import copy_attr, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
def autopad(k, p=None): # kernel, padding
|
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||||
# Pad to 'same'
|
# Pad to 'same' shape outputs
|
||||||
|
if d > 1:
|
||||||
|
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
||||||
if p is None:
|
if p is None:
|
||||||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||||
return p
|
return p
|
||||||
|
|
||||||
|
|
||||||
class Conv(nn.Module):
|
class Conv(nn.Module):
|
||||||
# Standard convolution
|
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
|
||||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
default_act = nn.SiLU() # default activation
|
||||||
|
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
||||||
self.bn = nn.BatchNorm2d(c2)
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.act(self.bn(self.conv(x)))
|
return self.act(self.bn(self.conv(x)))
|
||||||
@ -49,9 +61,15 @@ class Conv(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class DWConv(Conv):
|
class DWConv(Conv):
|
||||||
# Depth-wise convolution class
|
# Depth-wise convolution
|
||||||
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
||||||
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
||||||
|
|
||||||
|
|
||||||
|
class DWConvTranspose2d(nn.ConvTranspose2d):
|
||||||
|
# Depth-wise transpose convolution
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
||||||
|
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
||||||
|
|
||||||
|
|
||||||
class TransformerLayer(nn.Module):
|
class TransformerLayer(nn.Module):
|
||||||
@ -86,8 +104,8 @@ class TransformerBlock(nn.Module):
|
|||||||
if self.conv is not None:
|
if self.conv is not None:
|
||||||
x = self.conv(x)
|
x = self.conv(x)
|
||||||
b, _, w, h = x.shape
|
b, _, w, h = x.shape
|
||||||
p = x.flatten(2).unsqueeze(0).transpose(0, 3).squeeze(3)
|
p = x.flatten(2).permute(2, 0, 1)
|
||||||
return self.tr(p + self.linear(p)).unsqueeze(3).transpose(0, 3).reshape(b, self.c2, w, h)
|
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
||||||
|
|
||||||
|
|
||||||
class Bottleneck(nn.Module):
|
class Bottleneck(nn.Module):
|
||||||
@ -119,7 +137,21 @@ class BottleneckCSP(nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
y1 = self.cv3(self.m(self.cv1(x)))
|
y1 = self.cv3(self.m(self.cv1(x)))
|
||||||
y2 = self.cv2(x)
|
y2 = self.cv2(x)
|
||||||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
||||||
|
|
||||||
|
|
||||||
|
class CrossConv(nn.Module):
|
||||||
|
# Cross Convolution Downsample
|
||||||
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
||||||
|
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
||||||
|
super().__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
||||||
|
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
|
||||||
class C3(nn.Module):
|
class C3(nn.Module):
|
||||||
@ -129,12 +161,19 @@ class C3(nn.Module):
|
|||||||
c_ = int(c2 * e) # hidden channels
|
c_ = int(c2 * e) # hidden channels
|
||||||
self.cv1 = Conv(c1, c_, 1, 1)
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
self.cv2 = Conv(c1, c_, 1, 1)
|
self.cv2 = Conv(c1, c_, 1, 1)
|
||||||
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
||||||
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||||
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
||||||
|
|
||||||
|
|
||||||
|
class C3x(C3):
|
||||||
|
# C3 module with cross-convolutions
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||||||
|
c_ = int(c2 * e)
|
||||||
|
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
||||||
|
|
||||||
|
|
||||||
class C3TR(C3):
|
class C3TR(C3):
|
||||||
@ -178,7 +217,7 @@ class SPP(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class SPPF(nn.Module):
|
class SPPF(nn.Module):
|
||||||
# Spatial Pyramid Pooling - Fast (SPPF) layer for by Glenn Jocher
|
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv3 by Glenn Jocher
|
||||||
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
||||||
super().__init__()
|
super().__init__()
|
||||||
c_ = c1 // 2 # hidden channels
|
c_ = c1 // 2 # hidden channels
|
||||||
@ -192,18 +231,18 @@ class SPPF(nn.Module):
|
|||||||
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
||||||
y1 = self.m(x)
|
y1 = self.m(x)
|
||||||
y2 = self.m(y1)
|
y2 = self.m(y1)
|
||||||
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
|
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
||||||
|
|
||||||
|
|
||||||
class Focus(nn.Module):
|
class Focus(nn.Module):
|
||||||
# Focus wh information into c-space
|
# Focus wh information into c-space
|
||||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
||||||
# self.contract = Contract(gain=2)
|
# self.contract = Contract(gain=2)
|
||||||
|
|
||||||
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||||
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
||||||
# return self.conv(self.contract(x))
|
# return self.conv(self.contract(x))
|
||||||
|
|
||||||
|
|
||||||
@ -212,12 +251,12 @@ class GhostConv(nn.Module):
|
|||||||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||||||
super().__init__()
|
super().__init__()
|
||||||
c_ = c2 // 2 # hidden channels
|
c_ = c2 // 2 # hidden channels
|
||||||
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
||||||
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
y = self.cv1(x)
|
y = self.cv1(x)
|
||||||
return torch.cat([y, self.cv2(y)], 1)
|
return torch.cat((y, self.cv2(y)), 1)
|
||||||
|
|
||||||
|
|
||||||
class GhostBottleneck(nn.Module):
|
class GhostBottleneck(nn.Module):
|
||||||
@ -225,11 +264,12 @@ class GhostBottleneck(nn.Module):
|
|||||||
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
||||||
super().__init__()
|
super().__init__()
|
||||||
c_ = c2 // 2
|
c_ = c2 // 2
|
||||||
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
self.conv = nn.Sequential(
|
||||||
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
GhostConv(c1, c_, 1, 1), # pw
|
||||||
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||||
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||||||
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
||||||
|
act=False)) if s == 2 else nn.Identity()
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.conv(x) + self.shortcut(x)
|
return self.conv(x) + self.shortcut(x)
|
||||||
@ -274,159 +314,350 @@ class Concat(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class DetectMultiBackend(nn.Module):
|
class DetectMultiBackend(nn.Module):
|
||||||
# MultiBackend class for python inference on various backends
|
# YOLOv3 MultiBackend class for python inference on various backends
|
||||||
def __init__(self, weights='yolov3.pt', device=None, dnn=True):
|
def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
||||||
# Usage:
|
# Usage:
|
||||||
# PyTorch: weights = *.pt
|
# PyTorch: weights = *.pt
|
||||||
# TorchScript: *.torchscript.pt
|
# TorchScript: *.torchscript
|
||||||
# CoreML: *.mlmodel
|
# ONNX Runtime: *.onnx
|
||||||
# TensorFlow: *_saved_model
|
# ONNX OpenCV DNN: *.onnx --dnn
|
||||||
# TensorFlow: *.pb
|
# OpenVINO: *_openvino_model
|
||||||
# TensorFlow Lite: *.tflite
|
# CoreML: *.mlmodel
|
||||||
# ONNX Runtime: *.onnx
|
# TensorRT: *.engine
|
||||||
# OpenCV DNN: *.onnx with dnn=True
|
# TensorFlow SavedModel: *_saved_model
|
||||||
|
# TensorFlow GraphDef: *.pb
|
||||||
|
# TensorFlow Lite: *.tflite
|
||||||
|
# TensorFlow Edge TPU: *_edgetpu.tflite
|
||||||
|
# PaddlePaddle: *_paddle_model
|
||||||
|
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
|
||||||
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
w = str(weights[0] if isinstance(weights, list) else weights)
|
w = str(weights[0] if isinstance(weights, list) else weights)
|
||||||
suffix, suffixes = Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', '', '.mlmodel']
|
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
|
||||||
check_suffix(w, suffixes) # check weights have acceptable suffix
|
fp16 &= pt or jit or onnx or engine # FP16
|
||||||
pt, onnx, tflite, pb, saved_model, coreml = (suffix == x for x in suffixes) # backend booleans
|
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
||||||
jit = pt and 'torchscript' in w.lower()
|
stride = 32 # default stride
|
||||||
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
|
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
||||||
|
if not (pt or triton):
|
||||||
|
w = attempt_download(w) # download if not local
|
||||||
|
|
||||||
if jit: # TorchScript
|
if pt: # PyTorch
|
||||||
|
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
|
||||||
|
stride = max(int(model.stride.max()), 32) # model stride
|
||||||
|
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||||||
|
model.half() if fp16 else model.float()
|
||||||
|
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||||
|
elif jit: # TorchScript
|
||||||
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
||||||
extra_files = {'config.txt': ''} # model metadata
|
extra_files = {'config.txt': ''} # model metadata
|
||||||
model = torch.jit.load(w, _extra_files=extra_files)
|
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
||||||
if extra_files['config.txt']:
|
model.half() if fp16 else model.float()
|
||||||
d = json.loads(extra_files['config.txt']) # extra_files dict
|
if extra_files['config.txt']: # load metadata dict
|
||||||
|
d = json.loads(extra_files['config.txt'],
|
||||||
|
object_hook=lambda d: {int(k) if k.isdigit() else k: v
|
||||||
|
for k, v in d.items()})
|
||||||
stride, names = int(d['stride']), d['names']
|
stride, names = int(d['stride']), d['names']
|
||||||
elif pt: # PyTorch
|
|
||||||
from models.experimental import attempt_load # scoped to avoid circular import
|
|
||||||
model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device)
|
|
||||||
stride = int(model.stride.max()) # model stride
|
|
||||||
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
|
||||||
elif coreml: # CoreML *.mlmodel
|
|
||||||
import coremltools as ct
|
|
||||||
model = ct.models.MLModel(w)
|
|
||||||
elif dnn: # ONNX OpenCV DNN
|
elif dnn: # ONNX OpenCV DNN
|
||||||
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
||||||
check_requirements(('opencv-python>=4.5.4',))
|
check_requirements('opencv-python>=4.5.4')
|
||||||
net = cv2.dnn.readNetFromONNX(w)
|
net = cv2.dnn.readNetFromONNX(w)
|
||||||
elif onnx: # ONNX Runtime
|
elif onnx: # ONNX Runtime
|
||||||
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
||||||
cuda = torch.cuda.is_available()
|
|
||||||
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
||||||
import onnxruntime
|
import onnxruntime
|
||||||
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
||||||
session = onnxruntime.InferenceSession(w, providers=providers)
|
session = onnxruntime.InferenceSession(w, providers=providers)
|
||||||
else: # TensorFlow model (TFLite, pb, saved_model)
|
output_names = [x.name for x in session.get_outputs()]
|
||||||
|
meta = session.get_modelmeta().custom_metadata_map # metadata
|
||||||
|
if 'stride' in meta:
|
||||||
|
stride, names = int(meta['stride']), eval(meta['names'])
|
||||||
|
elif xml: # OpenVINO
|
||||||
|
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
||||||
|
check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||||||
|
from openvino.runtime import Core, Layout, get_batch
|
||||||
|
ie = Core()
|
||||||
|
if not Path(w).is_file(): # if not *.xml
|
||||||
|
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
||||||
|
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
|
||||||
|
if network.get_parameters()[0].get_layout().empty:
|
||||||
|
network.get_parameters()[0].set_layout(Layout("NCHW"))
|
||||||
|
batch_dim = get_batch(network)
|
||||||
|
if batch_dim.is_static:
|
||||||
|
batch_size = batch_dim.get_length()
|
||||||
|
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
||||||
|
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
|
||||||
|
elif engine: # TensorRT
|
||||||
|
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
||||||
|
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
||||||
|
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
||||||
|
if device.type == 'cpu':
|
||||||
|
device = torch.device('cuda:0')
|
||||||
|
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
||||||
|
logger = trt.Logger(trt.Logger.INFO)
|
||||||
|
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
||||||
|
model = runtime.deserialize_cuda_engine(f.read())
|
||||||
|
context = model.create_execution_context()
|
||||||
|
bindings = OrderedDict()
|
||||||
|
output_names = []
|
||||||
|
fp16 = False # default updated below
|
||||||
|
dynamic = False
|
||||||
|
for i in range(model.num_bindings):
|
||||||
|
name = model.get_binding_name(i)
|
||||||
|
dtype = trt.nptype(model.get_binding_dtype(i))
|
||||||
|
if model.binding_is_input(i):
|
||||||
|
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
||||||
|
dynamic = True
|
||||||
|
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
|
||||||
|
if dtype == np.float16:
|
||||||
|
fp16 = True
|
||||||
|
else: # output
|
||||||
|
output_names.append(name)
|
||||||
|
shape = tuple(context.get_binding_shape(i))
|
||||||
|
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
||||||
|
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
||||||
|
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||||||
|
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
||||||
|
elif coreml: # CoreML
|
||||||
|
LOGGER.info(f'Loading {w} for CoreML inference...')
|
||||||
|
import coremltools as ct
|
||||||
|
model = ct.models.MLModel(w)
|
||||||
|
elif saved_model: # TF SavedModel
|
||||||
|
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
||||||
|
import tensorflow as tf
|
||||||
|
keras = False # assume TF1 saved_model
|
||||||
|
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
||||||
|
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||||||
|
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
|
||||||
def wrap_frozen_graph(gd, inputs, outputs):
|
|
||||||
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
|
||||||
return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs),
|
|
||||||
tf.nest.map_structure(x.graph.as_graph_element, outputs))
|
|
||||||
|
|
||||||
LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...')
|
def wrap_frozen_graph(gd, inputs, outputs):
|
||||||
graph_def = tf.Graph().as_graph_def()
|
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
||||||
graph_def.ParseFromString(open(w, 'rb').read())
|
ge = x.graph.as_graph_element
|
||||||
frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0")
|
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
||||||
elif saved_model:
|
|
||||||
LOGGER.info(f'Loading {w} for TensorFlow saved_model inference...')
|
def gd_outputs(gd):
|
||||||
model = tf.keras.models.load_model(w)
|
name_list, input_list = [], []
|
||||||
elif tflite: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
||||||
if 'edgetpu' in w.lower():
|
name_list.append(node.name)
|
||||||
LOGGER.info(f'Loading {w} for TensorFlow Edge TPU inference...')
|
input_list.extend(node.input)
|
||||||
import tflite_runtime.interpreter as tfli
|
return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
|
||||||
delegate = {'Linux': 'libedgetpu.so.1', # install https://coral.ai/software/#edgetpu-runtime
|
|
||||||
'Darwin': 'libedgetpu.1.dylib',
|
gd = tf.Graph().as_graph_def() # TF GraphDef
|
||||||
'Windows': 'edgetpu.dll'}[platform.system()]
|
with open(w, 'rb') as f:
|
||||||
interpreter = tfli.Interpreter(model_path=w, experimental_delegates=[tfli.load_delegate(delegate)])
|
gd.ParseFromString(f.read())
|
||||||
else:
|
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
||||||
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
||||||
interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model
|
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
||||||
interpreter.allocate_tensors() # allocate
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||||||
input_details = interpreter.get_input_details() # inputs
|
except ImportError:
|
||||||
output_details = interpreter.get_output_details() # outputs
|
import tensorflow as tf
|
||||||
|
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
||||||
|
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
||||||
|
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
||||||
|
delegate = {
|
||||||
|
'Linux': 'libedgetpu.so.1',
|
||||||
|
'Darwin': 'libedgetpu.1.dylib',
|
||||||
|
'Windows': 'edgetpu.dll'}[platform.system()]
|
||||||
|
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
||||||
|
else: # TFLite
|
||||||
|
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
||||||
|
interpreter = Interpreter(model_path=w) # load TFLite model
|
||||||
|
interpreter.allocate_tensors() # allocate
|
||||||
|
input_details = interpreter.get_input_details() # inputs
|
||||||
|
output_details = interpreter.get_output_details() # outputs
|
||||||
|
# load metadata
|
||||||
|
with contextlib.suppress(zipfile.BadZipFile):
|
||||||
|
with zipfile.ZipFile(w, "r") as model:
|
||||||
|
meta_file = model.namelist()[0]
|
||||||
|
meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
|
||||||
|
stride, names = int(meta['stride']), meta['names']
|
||||||
|
elif tfjs: # TF.js
|
||||||
|
raise NotImplementedError('ERROR: YOLOv3 TF.js inference is not supported')
|
||||||
|
elif paddle: # PaddlePaddle
|
||||||
|
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
|
||||||
|
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
|
||||||
|
import paddle.inference as pdi
|
||||||
|
if not Path(w).is_file(): # if not *.pdmodel
|
||||||
|
w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
|
||||||
|
weights = Path(w).with_suffix('.pdiparams')
|
||||||
|
config = pdi.Config(str(w), str(weights))
|
||||||
|
if cuda:
|
||||||
|
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
||||||
|
predictor = pdi.create_predictor(config)
|
||||||
|
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
||||||
|
output_names = predictor.get_output_names()
|
||||||
|
elif triton: # NVIDIA Triton Inference Server
|
||||||
|
LOGGER.info(f'Using {w} as Triton Inference Server...')
|
||||||
|
check_requirements('tritonclient[all]')
|
||||||
|
from utils.triton import TritonRemoteModel
|
||||||
|
model = TritonRemoteModel(url=w)
|
||||||
|
nhwc = model.runtime.startswith("tensorflow")
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f'ERROR: {w} is not a supported format')
|
||||||
|
|
||||||
|
# class names
|
||||||
|
if 'names' not in locals():
|
||||||
|
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
||||||
|
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
||||||
|
names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
|
||||||
|
|
||||||
self.__dict__.update(locals()) # assign all variables to self
|
self.__dict__.update(locals()) # assign all variables to self
|
||||||
|
|
||||||
def forward(self, im, augment=False, visualize=False, val=False):
|
def forward(self, im, augment=False, visualize=False):
|
||||||
# MultiBackend inference
|
# YOLOv3 MultiBackend inference
|
||||||
b, ch, h, w = im.shape # batch, channel, height, width
|
b, ch, h, w = im.shape # batch, channel, height, width
|
||||||
|
if self.fp16 and im.dtype != torch.float16:
|
||||||
|
im = im.half() # to FP16
|
||||||
|
if self.nhwc:
|
||||||
|
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||||||
|
|
||||||
if self.pt: # PyTorch
|
if self.pt: # PyTorch
|
||||||
y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
|
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
||||||
return y if val else y[0]
|
elif self.jit: # TorchScript
|
||||||
elif self.coreml: # CoreML *.mlmodel
|
y = self.model(im)
|
||||||
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
elif self.dnn: # ONNX OpenCV DNN
|
||||||
|
im = im.cpu().numpy() # torch to numpy
|
||||||
|
self.net.setInput(im)
|
||||||
|
y = self.net.forward()
|
||||||
|
elif self.onnx: # ONNX Runtime
|
||||||
|
im = im.cpu().numpy() # torch to numpy
|
||||||
|
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
||||||
|
elif self.xml: # OpenVINO
|
||||||
|
im = im.cpu().numpy() # FP32
|
||||||
|
y = list(self.executable_network([im]).values())
|
||||||
|
elif self.engine: # TensorRT
|
||||||
|
if self.dynamic and im.shape != self.bindings['images'].shape:
|
||||||
|
i = self.model.get_binding_index('images')
|
||||||
|
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
||||||
|
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
|
||||||
|
for name in self.output_names:
|
||||||
|
i = self.model.get_binding_index(name)
|
||||||
|
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
||||||
|
s = self.bindings['images'].shape
|
||||||
|
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
||||||
|
self.binding_addrs['images'] = int(im.data_ptr())
|
||||||
|
self.context.execute_v2(list(self.binding_addrs.values()))
|
||||||
|
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
||||||
|
elif self.coreml: # CoreML
|
||||||
|
im = im.cpu().numpy()
|
||||||
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
||||||
# im = im.resize((192, 320), Image.ANTIALIAS)
|
# im = im.resize((192, 320), Image.ANTIALIAS)
|
||||||
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
||||||
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
if 'confidence' in y:
|
||||||
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||||||
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
||||||
elif self.onnx: # ONNX
|
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||||||
im = im.cpu().numpy() # torch to numpy
|
else:
|
||||||
if self.dnn: # ONNX OpenCV DNN
|
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
||||||
self.net.setInput(im)
|
elif self.paddle: # PaddlePaddle
|
||||||
y = self.net.forward()
|
im = im.cpu().numpy().astype(np.float32)
|
||||||
else: # ONNX Runtime
|
self.input_handle.copy_from_cpu(im)
|
||||||
y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
|
self.predictor.run()
|
||||||
else: # TensorFlow model (TFLite, pb, saved_model)
|
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
||||||
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
elif self.triton: # NVIDIA Triton Inference Server
|
||||||
if self.pb:
|
y = self.model(im)
|
||||||
y = self.frozen_func(x=self.tf.constant(im)).numpy()
|
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||||||
elif self.saved_model:
|
im = im.cpu().numpy()
|
||||||
y = self.model(im, training=False).numpy()
|
if self.saved_model: # SavedModel
|
||||||
elif self.tflite:
|
y = self.model(im, training=False) if self.keras else self.model(im)
|
||||||
input, output = self.input_details[0], self.output_details[0]
|
elif self.pb: # GraphDef
|
||||||
|
y = self.frozen_func(x=self.tf.constant(im))
|
||||||
|
else: # Lite or Edge TPU
|
||||||
|
input = self.input_details[0]
|
||||||
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
||||||
if int8:
|
if int8:
|
||||||
scale, zero_point = input['quantization']
|
scale, zero_point = input['quantization']
|
||||||
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
||||||
self.interpreter.set_tensor(input['index'], im)
|
self.interpreter.set_tensor(input['index'], im)
|
||||||
self.interpreter.invoke()
|
self.interpreter.invoke()
|
||||||
y = self.interpreter.get_tensor(output['index'])
|
y = []
|
||||||
if int8:
|
for output in self.output_details:
|
||||||
scale, zero_point = output['quantization']
|
x = self.interpreter.get_tensor(output['index'])
|
||||||
y = (y.astype(np.float32) - zero_point) * scale # re-scale
|
if int8:
|
||||||
y[..., 0] *= w # x
|
scale, zero_point = output['quantization']
|
||||||
y[..., 1] *= h # y
|
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
||||||
y[..., 2] *= w # w
|
y.append(x)
|
||||||
y[..., 3] *= h # h
|
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
||||||
y = torch.tensor(y)
|
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
||||||
return (y, []) if val else y
|
|
||||||
|
if isinstance(y, (list, tuple)):
|
||||||
|
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
||||||
|
else:
|
||||||
|
return self.from_numpy(y)
|
||||||
|
|
||||||
|
def from_numpy(self, x):
|
||||||
|
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||||
|
|
||||||
|
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||||||
|
# Warmup model by running inference once
|
||||||
|
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
|
||||||
|
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
||||||
|
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
||||||
|
for _ in range(2 if self.jit else 1): #
|
||||||
|
self.forward(im) # warmup
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _model_type(p='path/to/model.pt'):
|
||||||
|
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
||||||
|
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
||||||
|
from export import export_formats
|
||||||
|
from utils.downloads import is_url
|
||||||
|
sf = list(export_formats().Suffix) # export suffixes
|
||||||
|
if not is_url(p, check=False):
|
||||||
|
check_suffix(p, sf) # checks
|
||||||
|
url = urlparse(p) # if url may be Triton inference server
|
||||||
|
types = [s in Path(p).name for s in sf]
|
||||||
|
types[8] &= not types[9] # tflite &= not edgetpu
|
||||||
|
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
|
||||||
|
return types + [triton]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _load_metadata(f=Path('path/to/meta.yaml')):
|
||||||
|
# Load metadata from meta.yaml if it exists
|
||||||
|
if f.exists():
|
||||||
|
d = yaml_load(f)
|
||||||
|
return d['stride'], d['names'] # assign stride, names
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
|
||||||
class AutoShape(nn.Module):
|
class AutoShape(nn.Module):
|
||||||
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
# YOLOv3 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||||
conf = 0.25 # NMS confidence threshold
|
conf = 0.25 # NMS confidence threshold
|
||||||
iou = 0.45 # NMS IoU threshold
|
iou = 0.45 # NMS IoU threshold
|
||||||
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
agnostic = False # NMS class-agnostic
|
||||||
multi_label = False # NMS multiple labels per box
|
multi_label = False # NMS multiple labels per box
|
||||||
|
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
||||||
max_det = 1000 # maximum number of detections per image
|
max_det = 1000 # maximum number of detections per image
|
||||||
|
amp = False # Automatic Mixed Precision (AMP) inference
|
||||||
|
|
||||||
def __init__(self, model):
|
def __init__(self, model, verbose=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
if verbose:
|
||||||
|
LOGGER.info('Adding AutoShape... ')
|
||||||
|
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
||||||
|
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
||||||
|
self.pt = not self.dmb or model.pt # PyTorch model
|
||||||
self.model = model.eval()
|
self.model = model.eval()
|
||||||
|
if self.pt:
|
||||||
def autoshape(self):
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||||
LOGGER.info('AutoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
m.inplace = False # Detect.inplace=False for safe multithread inference
|
||||||
return self
|
m.export = True # do not output loss values
|
||||||
|
|
||||||
def _apply(self, fn):
|
def _apply(self, fn):
|
||||||
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
||||||
self = super()._apply(fn)
|
self = super()._apply(fn)
|
||||||
m = self.model.model[-1] # Detect()
|
if self.pt:
|
||||||
m.stride = fn(m.stride)
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||||
m.grid = list(map(fn, m.grid))
|
m.stride = fn(m.stride)
|
||||||
if isinstance(m.anchor_grid, list):
|
m.grid = list(map(fn, m.grid))
|
||||||
m.anchor_grid = list(map(fn, m.anchor_grid))
|
if isinstance(m.anchor_grid, list):
|
||||||
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
||||||
return self
|
return self
|
||||||
|
|
||||||
@torch.no_grad()
|
@smart_inference_mode()
|
||||||
def forward(self, imgs, size=640, augment=False, profile=False):
|
def forward(self, ims, size=640, augment=False, profile=False):
|
||||||
# Inference from various sources. For height=640, width=1280, RGB images example inputs are:
|
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
||||||
# file: imgs = 'data/images/zidane.jpg' # str or PosixPath
|
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
||||||
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
||||||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
||||||
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
||||||
@ -434,129 +665,139 @@ class AutoShape(nn.Module):
|
|||||||
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
||||||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||||
|
|
||||||
t = [time_sync()]
|
dt = (Profile(), Profile(), Profile())
|
||||||
p = next(self.model.parameters()) # for device and type
|
with dt[0]:
|
||||||
if isinstance(imgs, torch.Tensor): # torch
|
if isinstance(size, int): # expand
|
||||||
with amp.autocast(enabled=p.device.type != 'cpu'):
|
size = (size, size)
|
||||||
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
||||||
|
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
||||||
|
if isinstance(ims, torch.Tensor): # torch
|
||||||
|
with amp.autocast(autocast):
|
||||||
|
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
||||||
|
|
||||||
# Pre-process
|
# Pre-process
|
||||||
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
||||||
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
||||||
for i, im in enumerate(imgs):
|
for i, im in enumerate(ims):
|
||||||
f = f'image{i}' # filename
|
f = f'image{i}' # filename
|
||||||
if isinstance(im, (str, Path)): # filename or uri
|
if isinstance(im, (str, Path)): # filename or uri
|
||||||
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
||||||
im = np.asarray(exif_transpose(im))
|
im = np.asarray(exif_transpose(im))
|
||||||
elif isinstance(im, Image.Image): # PIL Image
|
elif isinstance(im, Image.Image): # PIL Image
|
||||||
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
||||||
files.append(Path(f).with_suffix('.jpg').name)
|
files.append(Path(f).with_suffix('.jpg').name)
|
||||||
if im.shape[0] < 5: # image in CHW
|
if im.shape[0] < 5: # image in CHW
|
||||||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||||
im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
|
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
||||||
s = im.shape[:2] # HWC
|
s = im.shape[:2] # HWC
|
||||||
shape0.append(s) # image shape
|
shape0.append(s) # image shape
|
||||||
g = (size / max(s)) # gain
|
g = max(size) / max(s) # gain
|
||||||
shape1.append([y * g for y in s])
|
shape1.append([int(y * g) for y in s])
|
||||||
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
||||||
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
|
||||||
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
|
||||||
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
||||||
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
||||||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
|
||||||
t.append(time_sync())
|
|
||||||
|
|
||||||
with amp.autocast(enabled=p.device.type != 'cpu'):
|
with amp.autocast(autocast):
|
||||||
# Inference
|
# Inference
|
||||||
y = self.model(x, augment, profile)[0] # forward
|
with dt[1]:
|
||||||
t.append(time_sync())
|
y = self.model(x, augment=augment) # forward
|
||||||
|
|
||||||
# Post-process
|
# Post-process
|
||||||
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes,
|
with dt[2]:
|
||||||
multi_label=self.multi_label, max_det=self.max_det) # NMS
|
y = non_max_suppression(y if self.dmb else y[0],
|
||||||
for i in range(n):
|
self.conf,
|
||||||
scale_coords(shape1, y[i][:, :4], shape0[i])
|
self.iou,
|
||||||
|
self.classes,
|
||||||
|
self.agnostic,
|
||||||
|
self.multi_label,
|
||||||
|
max_det=self.max_det) # NMS
|
||||||
|
for i in range(n):
|
||||||
|
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
||||||
|
|
||||||
t.append(time_sync())
|
return Detections(ims, y, files, dt, self.names, x.shape)
|
||||||
return Detections(imgs, y, files, t, self.names, x.shape)
|
|
||||||
|
|
||||||
|
|
||||||
class Detections:
|
class Detections:
|
||||||
# detections class for inference results
|
# YOLOv3 detections class for inference results
|
||||||
def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
|
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
d = pred[0].device # device
|
d = pred[0].device # device
|
||||||
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
|
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
||||||
self.imgs = imgs # list of images as numpy arrays
|
self.ims = ims # list of images as numpy arrays
|
||||||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||||
self.names = names # class names
|
self.names = names # class names
|
||||||
self.files = files # image filenames
|
self.files = files # image filenames
|
||||||
|
self.times = times # profiling times
|
||||||
self.xyxy = pred # xyxy pixels
|
self.xyxy = pred # xyxy pixels
|
||||||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||||
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||||
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||||
self.n = len(self.pred) # number of images (batch size)
|
self.n = len(self.pred) # number of images (batch size)
|
||||||
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
||||||
self.s = shape # inference BCHW shape
|
self.s = tuple(shape) # inference BCHW shape
|
||||||
|
|
||||||
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
|
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
||||||
crops = []
|
s, crops = '', []
|
||||||
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
|
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
||||||
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
||||||
if pred.shape[0]:
|
if pred.shape[0]:
|
||||||
for c in pred[:, -1].unique():
|
for c in pred[:, -1].unique():
|
||||||
n = (pred[:, -1] == c).sum() # detections per class
|
n = (pred[:, -1] == c).sum() # detections per class
|
||||||
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||||
|
s = s.rstrip(', ')
|
||||||
if show or save or render or crop:
|
if show or save or render or crop:
|
||||||
annotator = Annotator(im, example=str(self.names))
|
annotator = Annotator(im, example=str(self.names))
|
||||||
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
||||||
label = f'{self.names[int(cls)]} {conf:.2f}'
|
label = f'{self.names[int(cls)]} {conf:.2f}'
|
||||||
if crop:
|
if crop:
|
||||||
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
||||||
crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
|
crops.append({
|
||||||
'im': save_one_box(box, im, file=file, save=save)})
|
'box': box,
|
||||||
|
'conf': conf,
|
||||||
|
'cls': cls,
|
||||||
|
'label': label,
|
||||||
|
'im': save_one_box(box, im, file=file, save=save)})
|
||||||
else: # all others
|
else: # all others
|
||||||
annotator.box_label(box, label, color=colors(cls))
|
annotator.box_label(box, label if labels else '', color=colors(cls))
|
||||||
im = annotator.im
|
im = annotator.im
|
||||||
else:
|
else:
|
||||||
s += '(no detections)'
|
s += '(no detections)'
|
||||||
|
|
||||||
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
||||||
if pprint:
|
|
||||||
LOGGER.info(s.rstrip(', '))
|
|
||||||
if show:
|
if show:
|
||||||
im.show(self.files[i]) # show
|
display(im) if is_notebook() else im.show(self.files[i])
|
||||||
if save:
|
if save:
|
||||||
f = self.files[i]
|
f = self.files[i]
|
||||||
im.save(save_dir / f) # save
|
im.save(save_dir / f) # save
|
||||||
if i == self.n - 1:
|
if i == self.n - 1:
|
||||||
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
||||||
if render:
|
if render:
|
||||||
self.imgs[i] = np.asarray(im)
|
self.ims[i] = np.asarray(im)
|
||||||
|
if pprint:
|
||||||
|
s = s.lstrip('\n')
|
||||||
|
return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
|
||||||
if crop:
|
if crop:
|
||||||
if save:
|
if save:
|
||||||
LOGGER.info(f'Saved results to {save_dir}\n')
|
LOGGER.info(f'Saved results to {save_dir}\n')
|
||||||
return crops
|
return crops
|
||||||
|
|
||||||
def print(self):
|
@TryExcept('Showing images is not supported in this environment')
|
||||||
self.display(pprint=True) # print results
|
def show(self, labels=True):
|
||||||
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
|
self._run(show=True, labels=labels) # show results
|
||||||
self.t)
|
|
||||||
|
|
||||||
def show(self):
|
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
|
||||||
self.display(show=True) # show results
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
||||||
|
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
||||||
|
|
||||||
def save(self, save_dir='runs/detect/exp'):
|
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
|
||||||
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
||||||
self.display(save=True, save_dir=save_dir) # save results
|
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
||||||
|
|
||||||
def crop(self, save=True, save_dir='runs/detect/exp'):
|
def render(self, labels=True):
|
||||||
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
|
self._run(render=True, labels=labels) # render results
|
||||||
return self.display(crop=True, save=save, save_dir=save_dir) # crop results
|
return self.ims
|
||||||
|
|
||||||
def render(self):
|
|
||||||
self.display(render=True) # render results
|
|
||||||
return self.imgs
|
|
||||||
|
|
||||||
def pandas(self):
|
def pandas(self):
|
||||||
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
||||||
@ -570,24 +811,57 @@ class Detections:
|
|||||||
|
|
||||||
def tolist(self):
|
def tolist(self):
|
||||||
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||||
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
|
r = range(self.n) # iterable
|
||||||
for d in x:
|
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
||||||
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
# for d in x:
|
||||||
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||||||
|
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def __len__(self):
|
def print(self):
|
||||||
|
LOGGER.info(self.__str__())
|
||||||
|
|
||||||
|
def __len__(self): # override len(results)
|
||||||
return self.n
|
return self.n
|
||||||
|
|
||||||
|
def __str__(self): # override print(results)
|
||||||
|
return self._run(pprint=True) # print results
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return f'YOLOv3 {self.__class__} instance\n' + self.__str__()
|
||||||
|
|
||||||
|
|
||||||
|
class Proto(nn.Module):
|
||||||
|
# YOLOv3 mask Proto module for segmentation models
|
||||||
|
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
||||||
|
super().__init__()
|
||||||
|
self.cv1 = Conv(c1, c_, k=3)
|
||||||
|
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
||||||
|
self.cv2 = Conv(c_, c_, k=3)
|
||||||
|
self.cv3 = Conv(c_, c2)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
||||||
|
|
||||||
|
|
||||||
class Classify(nn.Module):
|
class Classify(nn.Module):
|
||||||
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
# YOLOv3 classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
||||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
def __init__(self,
|
||||||
|
c1,
|
||||||
|
c2,
|
||||||
|
k=1,
|
||||||
|
s=1,
|
||||||
|
p=None,
|
||||||
|
g=1,
|
||||||
|
dropout_p=0.0): # ch_in, ch_out, kernel, stride, padding, groups, dropout probability
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
c_ = 1280 # efficientnet_b0 size
|
||||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
|
||||||
self.flat = nn.Flatten()
|
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
||||||
|
self.drop = nn.Dropout(p=dropout_p, inplace=True)
|
||||||
|
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
if isinstance(x, list):
|
||||||
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
x = torch.cat(x, 1)
|
||||||
|
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
||||||
|
|||||||
@ -8,24 +8,9 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
from models.common import Conv
|
|
||||||
from utils.downloads import attempt_download
|
from utils.downloads import attempt_download
|
||||||
|
|
||||||
|
|
||||||
class CrossConv(nn.Module):
|
|
||||||
# Cross Convolution Downsample
|
|
||||||
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
|
||||||
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
|
||||||
super().__init__()
|
|
||||||
c_ = int(c2 * e) # hidden channels
|
|
||||||
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
|
||||||
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
|
||||||
self.add = shortcut and c1 == c2
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
|
||||||
|
|
||||||
|
|
||||||
class Sum(nn.Module):
|
class Sum(nn.Module):
|
||||||
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
||||||
def __init__(self, n, weight=False): # n: number of inputs
|
def __init__(self, n, weight=False): # n: number of inputs
|
||||||
@ -63,8 +48,8 @@ class MixConv2d(nn.Module):
|
|||||||
a[0] = 1
|
a[0] = 1
|
||||||
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
||||||
|
|
||||||
self.m = nn.ModuleList(
|
self.m = nn.ModuleList([
|
||||||
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
|
nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
|
||||||
self.bn = nn.BatchNorm2d(c2)
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
self.act = nn.SiLU()
|
self.act = nn.SiLU()
|
||||||
|
|
||||||
@ -78,44 +63,49 @@ class Ensemble(nn.ModuleList):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
def forward(self, x, augment=False, profile=False, visualize=False):
|
def forward(self, x, augment=False, profile=False, visualize=False):
|
||||||
y = []
|
y = [module(x, augment, profile, visualize)[0] for module in self]
|
||||||
for module in self:
|
|
||||||
y.append(module(x, augment, profile, visualize)[0])
|
|
||||||
# y = torch.stack(y).max(0)[0] # max ensemble
|
# y = torch.stack(y).max(0)[0] # max ensemble
|
||||||
# y = torch.stack(y).mean(0) # mean ensemble
|
# y = torch.stack(y).mean(0) # mean ensemble
|
||||||
y = torch.cat(y, 1) # nms ensemble
|
y = torch.cat(y, 1) # nms ensemble
|
||||||
return y, None # inference, train output
|
return y, None # inference, train output
|
||||||
|
|
||||||
|
|
||||||
def attempt_load(weights, map_location=None, inplace=True, fuse=True):
|
def attempt_load(weights, device=None, inplace=True, fuse=True):
|
||||||
|
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||||
from models.yolo import Detect, Model
|
from models.yolo import Detect, Model
|
||||||
|
|
||||||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
|
||||||
model = Ensemble()
|
model = Ensemble()
|
||||||
for w in weights if isinstance(weights, list) else [weights]:
|
for w in weights if isinstance(weights, list) else [weights]:
|
||||||
ckpt = torch.load(attempt_download(w), map_location=map_location) # load
|
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
|
||||||
ckpt = (ckpt['ema'] or ckpt['model']).float() # FP32 model
|
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||||
model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
|
|
||||||
|
|
||||||
# Compatibility updates
|
# Model compatibility updates
|
||||||
|
if not hasattr(ckpt, 'stride'):
|
||||||
|
ckpt.stride = torch.tensor([32.])
|
||||||
|
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
||||||
|
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
|
||||||
|
|
||||||
|
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
||||||
|
|
||||||
|
# Module compatibility updates
|
||||||
for m in model.modules():
|
for m in model.modules():
|
||||||
t = type(m)
|
t = type(m)
|
||||||
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
||||||
m.inplace = inplace # torch 1.7.0 compatibility
|
m.inplace = inplace # torch 1.7.0 compatibility
|
||||||
if t is Detect:
|
if t is Detect and not isinstance(m.anchor_grid, list):
|
||||||
if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility
|
delattr(m, 'anchor_grid')
|
||||||
delattr(m, 'anchor_grid')
|
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
||||||
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
|
||||||
elif t is Conv:
|
|
||||||
m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
|
|
||||||
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
||||||
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||||
|
|
||||||
|
# Return model
|
||||||
if len(model) == 1:
|
if len(model) == 1:
|
||||||
return model[-1] # return model
|
return model[-1]
|
||||||
else:
|
|
||||||
print(f'Ensemble created with {weights}\n')
|
# Return detection ensemble
|
||||||
for k in ['names']:
|
print(f'Ensemble created with {weights}\n')
|
||||||
setattr(model, k, getattr(model[-1], k))
|
for k in 'names', 'nc', 'yaml':
|
||||||
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
setattr(model, k, getattr(model[0], k))
|
||||||
return model # return ensemble
|
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
||||||
|
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
||||||
|
return model
|
||||||
|
|||||||
59
models/hub/anchors.yaml
Normal file
59
models/hub/anchors.yaml
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# Default anchors for COCO data
|
||||||
|
|
||||||
|
|
||||||
|
# P5 -------------------------------------------------------------------------------------------------------------------
|
||||||
|
# P5-640:
|
||||||
|
anchors_p5_640:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
|
||||||
|
# P6 -------------------------------------------------------------------------------------------------------------------
|
||||||
|
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
||||||
|
anchors_p6_640:
|
||||||
|
- [9,11, 21,19, 17,41] # P3/8
|
||||||
|
- [43,32, 39,70, 86,64] # P4/16
|
||||||
|
- [65,131, 134,130, 120,265] # P5/32
|
||||||
|
- [282,180, 247,354, 512,387] # P6/64
|
||||||
|
|
||||||
|
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
||||||
|
anchors_p6_1280:
|
||||||
|
- [19,27, 44,40, 38,94] # P3/8
|
||||||
|
- [96,68, 86,152, 180,137] # P4/16
|
||||||
|
- [140,301, 303,264, 238,542] # P5/32
|
||||||
|
- [436,615, 739,380, 925,792] # P6/64
|
||||||
|
|
||||||
|
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
||||||
|
anchors_p6_1920:
|
||||||
|
- [28,41, 67,59, 57,141] # P3/8
|
||||||
|
- [144,103, 129,227, 270,205] # P4/16
|
||||||
|
- [209,452, 455,396, 358,812] # P5/32
|
||||||
|
- [653,922, 1109,570, 1387,1187] # P6/64
|
||||||
|
|
||||||
|
|
||||||
|
# P7 -------------------------------------------------------------------------------------------------------------------
|
||||||
|
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
||||||
|
anchors_p7_640:
|
||||||
|
- [11,11, 13,30, 29,20] # P3/8
|
||||||
|
- [30,46, 61,38, 39,92] # P4/16
|
||||||
|
- [78,80, 146,66, 79,163] # P5/32
|
||||||
|
- [149,150, 321,143, 157,303] # P6/64
|
||||||
|
- [257,402, 359,290, 524,372] # P7/128
|
||||||
|
|
||||||
|
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
||||||
|
anchors_p7_1280:
|
||||||
|
- [19,22, 54,36, 32,77] # P3/8
|
||||||
|
- [70,83, 138,71, 75,173] # P4/16
|
||||||
|
- [165,159, 148,334, 375,151] # P5/32
|
||||||
|
- [334,317, 251,626, 499,474] # P6/64
|
||||||
|
- [750,326, 534,814, 1079,818] # P7/128
|
||||||
|
|
||||||
|
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
||||||
|
anchors_p7_1920:
|
||||||
|
- [29,34, 81,55, 47,115] # P3/8
|
||||||
|
- [105,124, 207,107, 113,259] # P4/16
|
||||||
|
- [247,238, 222,500, 563,227] # P5/32
|
||||||
|
- [501,476, 376,939, 749,711] # P6/64
|
||||||
|
- [1126,489, 801,1222, 1618,1227] # P7/128
|
||||||
48
models/hub/yolov5-bifpn.yaml
Normal file
48
models/hub/yolov5-bifpn.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 BiFPN head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
42
models/hub/yolov5-fpn.yaml
Normal file
42
models/hub/yolov5-fpn.yaml
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 FPN head
|
||||||
|
head:
|
||||||
|
[[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 3, C3, [512, False]], # 14 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 3, C3, [256, False]], # 18 (P3/8-small)
|
||||||
|
|
||||||
|
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
54
models/hub/yolov5-p2.yaml
Normal file
54
models/hub/yolov5-p2.yaml
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [128, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 2], 1, Concat, [1]], # cat backbone P2
|
||||||
|
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [128, 3, 2]],
|
||||||
|
[[-1, 18], 1, Concat, [1]], # cat head P3
|
||||||
|
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
|
||||||
|
|
||||||
|
[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
|
||||||
|
]
|
||||||
41
models/hub/yolov5-p34.yaml
Normal file
41
models/hub/yolov5-p34.yaml
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head with (P3, P4) outputs
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[[17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4)
|
||||||
|
]
|
||||||
56
models/hub/yolov5-p6.yaml
Normal file
56
models/hub/yolov5-p6.yaml
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [768]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [768, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||||
|
[-1, 3, C3, [768, False]], # 15
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 19
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [768, 3, 2]],
|
||||||
|
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||||
|
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
||||||
67
models/hub/yolov5-p7.yaml
Normal file
67
models/hub/yolov5-p7.yaml
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [768]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
|
||||||
|
[-1, 3, C3, [1280]],
|
||||||
|
[-1, 1, SPPF, [1280, 5]], # 13
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [1024, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat backbone P6
|
||||||
|
[-1, 3, C3, [1024, False]], # 17
|
||||||
|
|
||||||
|
[-1, 1, Conv, [768, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||||
|
[-1, 3, C3, [768, False]], # 21
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 25
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 29 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 26], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 32 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 22], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [768, False]], # 35 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [768, 3, 2]],
|
||||||
|
[[-1, 18], 1, Concat, [1]], # cat head P6
|
||||||
|
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P7
|
||||||
|
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
|
||||||
|
|
||||||
|
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
|
||||||
|
]
|
||||||
48
models/hub/yolov5-panet.yaml
Normal file
48
models/hub/yolov5-panet.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 PANet head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
60
models/hub/yolov5l6.yaml
Normal file
60
models/hub/yolov5l6.yaml
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [19,27, 44,40, 38,94] # P3/8
|
||||||
|
- [96,68, 86,152, 180,137] # P4/16
|
||||||
|
- [140,301, 303,264, 238,542] # P5/32
|
||||||
|
- [436,615, 739,380, 925,792] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [768]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [768, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||||
|
[-1, 3, C3, [768, False]], # 15
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 19
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [768, 3, 2]],
|
||||||
|
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||||
|
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
||||||
60
models/hub/yolov5m6.yaml
Normal file
60
models/hub/yolov5m6.yaml
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.67 # model depth multiple
|
||||||
|
width_multiple: 0.75 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [19,27, 44,40, 38,94] # P3/8
|
||||||
|
- [96,68, 86,152, 180,137] # P4/16
|
||||||
|
- [140,301, 303,264, 238,542] # P5/32
|
||||||
|
- [436,615, 739,380, 925,792] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [768]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [768, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||||
|
[-1, 3, C3, [768, False]], # 15
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 19
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [768, 3, 2]],
|
||||||
|
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||||
|
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
||||||
60
models/hub/yolov5n6.yaml
Normal file
60
models/hub/yolov5n6.yaml
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.25 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [19,27, 44,40, 38,94] # P3/8
|
||||||
|
- [96,68, 86,152, 180,137] # P4/16
|
||||||
|
- [140,301, 303,264, 238,542] # P5/32
|
||||||
|
- [436,615, 739,380, 925,792] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [768]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [768, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||||
|
[-1, 3, C3, [768, False]], # 15
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 19
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [768, 3, 2]],
|
||||||
|
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||||
|
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
||||||
49
models/hub/yolov5s-LeakyReLU.yaml
Normal file
49
models/hub/yolov5s-LeakyReLU.yaml
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
activation: nn.LeakyReLU(0.1) # <----- Conv() activation used throughout entire YOLOv5 model
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/hub/yolov5s-ghost.yaml
Normal file
48
models/hub/yolov5s-ghost.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3Ghost, [128]],
|
||||||
|
[-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3Ghost, [256]],
|
||||||
|
[-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3Ghost, [512]],
|
||||||
|
[-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3Ghost, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, GhostConv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3Ghost, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, GhostConv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, GhostConv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, GhostConv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/hub/yolov5s-transformer.yaml
Normal file
48
models/hub/yolov5s-transformer.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
60
models/hub/yolov5s6.yaml
Normal file
60
models/hub/yolov5s6.yaml
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [19,27, 44,40, 38,94] # P3/8
|
||||||
|
- [96,68, 86,152, 180,137] # P4/16
|
||||||
|
- [140,301, 303,264, 238,542] # P5/32
|
||||||
|
- [436,615, 739,380, 925,792] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [768]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [768, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||||
|
[-1, 3, C3, [768, False]], # 15
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 19
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [768, 3, 2]],
|
||||||
|
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||||
|
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
||||||
60
models/hub/yolov5x6.yaml
Normal file
60
models/hub/yolov5x6.yaml
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.33 # model depth multiple
|
||||||
|
width_multiple: 1.25 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [19,27, 44,40, 38,94] # P3/8
|
||||||
|
- [96,68, 86,152, 180,137] # P4/16
|
||||||
|
- [140,301, 303,264, 238,542] # P5/32
|
||||||
|
- [436,615, 739,380, 925,792] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [768]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [768, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||||
|
[-1, 3, C3, [768, False]], # 15
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 19
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [768, 3, 2]],
|
||||||
|
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||||
|
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
||||||
48
models/segment/yolov5l-seg.yaml
Normal file
48
models/segment/yolov5l-seg.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/segment/yolov5m-seg.yaml
Normal file
48
models/segment/yolov5m-seg.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.67 # model depth multiple
|
||||||
|
width_multiple: 0.75 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/segment/yolov5n-seg.yaml
Normal file
48
models/segment/yolov5n-seg.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.25 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/segment/yolov5s-seg.yaml
Normal file
48
models/segment/yolov5s-seg.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.5 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/segment/yolov5x-seg.yaml
Normal file
48
models/segment/yolov5x-seg.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.33 # model depth multiple
|
||||||
|
width_multiple: 1.25 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
450
models/tf.py
450
models/tf.py
@ -1,25 +1,22 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
"""
|
"""
|
||||||
TensorFlow, Keras and TFLite versions of
|
TensorFlow, Keras and TFLite versions of YOLOv3
|
||||||
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
$ python models/tf.py --weights yolov3.pt
|
$ python models/tf.py --weights yolov5s.pt
|
||||||
|
|
||||||
Export:
|
Export:
|
||||||
$ python path/to/export.py --weights yolov3.pt --include saved_model pb tflite tfjs
|
$ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
|
||||||
import sys
|
import sys
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from packaging import version
|
|
||||||
|
|
||||||
FILE = Path(__file__).resolve()
|
FILE = Path(__file__).resolve()
|
||||||
ROOT = FILE.parents[1] # root directory
|
ROOT = FILE.parents[1] # YOLOv3 root directory
|
||||||
if str(ROOT) not in sys.path:
|
if str(ROOT) not in sys.path:
|
||||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
||||||
@ -28,21 +25,15 @@ import numpy as np
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from keras import backend
|
|
||||||
from keras.engine.base_layer import Layer
|
|
||||||
from keras.engine.input_spec import InputSpec
|
|
||||||
from keras.utils import conv_utils
|
|
||||||
from tensorflow import keras
|
from tensorflow import keras
|
||||||
|
|
||||||
from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, Concat, Conv, DWConv, Focus, autopad
|
from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
|
||||||
from models.experimental import CrossConv, MixConv2d, attempt_load
|
DWConvTranspose2d, Focus, autopad)
|
||||||
from models.yolo import Detect
|
from models.experimental import MixConv2d, attempt_load
|
||||||
|
from models.yolo import Detect, Segment
|
||||||
from utils.activations import SiLU
|
from utils.activations import SiLU
|
||||||
from utils.general import LOGGER, make_divisible, print_args
|
from utils.general import LOGGER, make_divisible, print_args
|
||||||
|
|
||||||
# isort: off
|
|
||||||
from tensorflow.python.util.tf_export import keras_export
|
|
||||||
|
|
||||||
|
|
||||||
class TFBN(keras.layers.Layer):
|
class TFBN(keras.layers.Layer):
|
||||||
# TensorFlow BatchNormalization wrapper
|
# TensorFlow BatchNormalization wrapper
|
||||||
@ -59,33 +50,14 @@ class TFBN(keras.layers.Layer):
|
|||||||
return self.bn(inputs)
|
return self.bn(inputs)
|
||||||
|
|
||||||
|
|
||||||
class TFMaxPool2d(keras.layers.Layer):
|
|
||||||
# TensorFlow MAX Pooling
|
|
||||||
def __init__(self, k, s, p, w=None):
|
|
||||||
super().__init__()
|
|
||||||
self.pool = keras.layers.MaxPool2D(pool_size=k, strides=s, padding='valid')
|
|
||||||
|
|
||||||
def call(self, inputs):
|
|
||||||
return self.pool(inputs)
|
|
||||||
|
|
||||||
|
|
||||||
class TFZeroPad2d(keras.layers.Layer):
|
|
||||||
# TensorFlow MAX Pooling
|
|
||||||
def __init__(self, p, w=None):
|
|
||||||
super().__init__()
|
|
||||||
if version.parse(tf.__version__) < version.parse('2.11.0'):
|
|
||||||
self.zero_pad = ZeroPadding2D(padding=p)
|
|
||||||
else:
|
|
||||||
self.zero_pad = keras.layers.ZeroPadding2D(padding=((p[0], p[1]), (p[2], p[3])))
|
|
||||||
|
|
||||||
def call(self, inputs):
|
|
||||||
return self.zero_pad(inputs)
|
|
||||||
|
|
||||||
|
|
||||||
class TFPad(keras.layers.Layer):
|
class TFPad(keras.layers.Layer):
|
||||||
|
# Pad inputs in spatial dimensions 1 and 2
|
||||||
def __init__(self, pad):
|
def __init__(self, pad):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
if isinstance(pad, int):
|
||||||
|
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
||||||
|
else: # tuple/list
|
||||||
|
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
|
||||||
|
|
||||||
def call(self, inputs):
|
def call(self, inputs):
|
||||||
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
||||||
@ -97,31 +69,69 @@ class TFConv(keras.layers.Layer):
|
|||||||
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||||||
assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
|
|
||||||
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
||||||
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
||||||
|
|
||||||
conv = keras.layers.Conv2D(
|
conv = keras.layers.Conv2D(
|
||||||
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
|
filters=c2,
|
||||||
|
kernel_size=k,
|
||||||
|
strides=s,
|
||||||
|
padding='SAME' if s == 1 else 'VALID',
|
||||||
|
use_bias=not hasattr(w, 'bn'),
|
||||||
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
||||||
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
||||||
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
||||||
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
||||||
|
self.act = activations(w.act) if act else tf.identity
|
||||||
# activations
|
|
||||||
if isinstance(w.act, nn.LeakyReLU):
|
|
||||||
self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
|
|
||||||
elif isinstance(w.act, nn.Hardswish):
|
|
||||||
self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
|
|
||||||
elif isinstance(w.act, (nn.SiLU, SiLU)):
|
|
||||||
self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
|
|
||||||
else:
|
|
||||||
raise Exception(f'no matching TensorFlow activation found for {w.act}')
|
|
||||||
|
|
||||||
def call(self, inputs):
|
def call(self, inputs):
|
||||||
return self.act(self.bn(self.conv(inputs)))
|
return self.act(self.bn(self.conv(inputs)))
|
||||||
|
|
||||||
|
|
||||||
|
class TFDWConv(keras.layers.Layer):
|
||||||
|
# Depthwise convolution
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
|
||||||
|
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
||||||
|
super().__init__()
|
||||||
|
assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
|
||||||
|
conv = keras.layers.DepthwiseConv2D(
|
||||||
|
kernel_size=k,
|
||||||
|
depth_multiplier=c2 // c1,
|
||||||
|
strides=s,
|
||||||
|
padding='SAME' if s == 1 else 'VALID',
|
||||||
|
use_bias=not hasattr(w, 'bn'),
|
||||||
|
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
||||||
|
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
||||||
|
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
||||||
|
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
||||||
|
self.act = activations(w.act) if act else tf.identity
|
||||||
|
|
||||||
|
def call(self, inputs):
|
||||||
|
return self.act(self.bn(self.conv(inputs)))
|
||||||
|
|
||||||
|
|
||||||
|
class TFDWConvTranspose2d(keras.layers.Layer):
|
||||||
|
# Depthwise ConvTranspose2d
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
|
||||||
|
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
||||||
|
super().__init__()
|
||||||
|
assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
|
||||||
|
assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
|
||||||
|
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
|
||||||
|
self.c1 = c1
|
||||||
|
self.conv = [
|
||||||
|
keras.layers.Conv2DTranspose(filters=1,
|
||||||
|
kernel_size=k,
|
||||||
|
strides=s,
|
||||||
|
padding='VALID',
|
||||||
|
output_padding=p2,
|
||||||
|
use_bias=True,
|
||||||
|
kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
|
||||||
|
bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
|
||||||
|
|
||||||
|
def call(self, inputs):
|
||||||
|
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
|
||||||
|
|
||||||
|
|
||||||
class TFFocus(keras.layers.Layer):
|
class TFFocus(keras.layers.Layer):
|
||||||
# Focus wh information into c-space
|
# Focus wh information into c-space
|
||||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
||||||
@ -131,10 +141,8 @@ class TFFocus(keras.layers.Layer):
|
|||||||
|
|
||||||
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
||||||
# inputs = inputs / 255 # normalize 0-255 to 0-1
|
# inputs = inputs / 255 # normalize 0-255 to 0-1
|
||||||
return self.conv(tf.concat([inputs[:, ::2, ::2, :],
|
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
|
||||||
inputs[:, 1::2, ::2, :],
|
return self.conv(tf.concat(inputs, 3))
|
||||||
inputs[:, ::2, 1::2, :],
|
|
||||||
inputs[:, 1::2, 1::2, :]], 3))
|
|
||||||
|
|
||||||
|
|
||||||
class TFBottleneck(keras.layers.Layer):
|
class TFBottleneck(keras.layers.Layer):
|
||||||
@ -150,15 +158,32 @@ class TFBottleneck(keras.layers.Layer):
|
|||||||
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
||||||
|
|
||||||
|
|
||||||
|
class TFCrossConv(keras.layers.Layer):
|
||||||
|
# Cross Convolution
|
||||||
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
|
||||||
|
super().__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
|
||||||
|
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def call(self, inputs):
|
||||||
|
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
||||||
|
|
||||||
|
|
||||||
class TFConv2d(keras.layers.Layer):
|
class TFConv2d(keras.layers.Layer):
|
||||||
# Substitution for PyTorch nn.Conv2D
|
# Substitution for PyTorch nn.Conv2D
|
||||||
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||||||
self.conv = keras.layers.Conv2D(
|
self.conv = keras.layers.Conv2D(filters=c2,
|
||||||
c2, k, s, 'VALID', use_bias=bias,
|
kernel_size=k,
|
||||||
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
|
strides=s,
|
||||||
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
|
padding='VALID',
|
||||||
|
use_bias=bias,
|
||||||
|
kernel_initializer=keras.initializers.Constant(
|
||||||
|
w.weight.permute(2, 3, 1, 0).numpy()),
|
||||||
|
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
|
||||||
|
|
||||||
def call(self, inputs):
|
def call(self, inputs):
|
||||||
return self.conv(inputs)
|
return self.conv(inputs)
|
||||||
@ -175,7 +200,7 @@ class TFBottleneckCSP(keras.layers.Layer):
|
|||||||
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
||||||
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
||||||
self.bn = TFBN(w.bn)
|
self.bn = TFBN(w.bn)
|
||||||
self.act = lambda x: keras.activations.relu(x, alpha=0.1)
|
self.act = lambda x: keras.activations.swish(x)
|
||||||
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||||||
|
|
||||||
def call(self, inputs):
|
def call(self, inputs):
|
||||||
@ -199,6 +224,22 @@ class TFC3(keras.layers.Layer):
|
|||||||
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
||||||
|
|
||||||
|
|
||||||
|
class TFC3x(keras.layers.Layer):
|
||||||
|
# 3 module with cross-convolutions
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||||||
|
# ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super().__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||||
|
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
||||||
|
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
||||||
|
self.m = keras.Sequential([
|
||||||
|
TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
|
||||||
|
|
||||||
|
def call(self, inputs):
|
||||||
|
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
||||||
|
|
||||||
|
|
||||||
class TFSPP(keras.layers.Layer):
|
class TFSPP(keras.layers.Layer):
|
||||||
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||||
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
||||||
@ -230,6 +271,7 @@ class TFSPPF(keras.layers.Layer):
|
|||||||
|
|
||||||
|
|
||||||
class TFDetect(keras.layers.Layer):
|
class TFDetect(keras.layers.Layer):
|
||||||
|
# TF YOLOv3 Detect layer
|
||||||
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
||||||
@ -239,8 +281,7 @@ class TFDetect(keras.layers.Layer):
|
|||||||
self.na = len(anchors[0]) // 2 # number of anchors
|
self.na = len(anchors[0]) // 2 # number of anchors
|
||||||
self.grid = [tf.zeros(1)] * self.nl # init grid
|
self.grid = [tf.zeros(1)] * self.nl # init grid
|
||||||
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
||||||
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]),
|
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
|
||||||
[self.nl, 1, -1, 1, 2])
|
|
||||||
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
||||||
self.training = False # set to False after building model
|
self.training = False # set to False after building model
|
||||||
self.imgsz = imgsz
|
self.imgsz = imgsz
|
||||||
@ -255,19 +296,21 @@ class TFDetect(keras.layers.Layer):
|
|||||||
x.append(self.m[i](inputs[i]))
|
x.append(self.m[i](inputs[i]))
|
||||||
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
||||||
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
||||||
x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
|
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
|
||||||
|
|
||||||
if not self.training: # inference
|
if not self.training: # inference
|
||||||
y = tf.sigmoid(x[i])
|
y = x[i]
|
||||||
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
|
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
|
||||||
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
|
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
|
||||||
|
xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
|
||||||
|
wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
|
||||||
# Normalize xywh to 0-1 to reduce calibration error
|
# Normalize xywh to 0-1 to reduce calibration error
|
||||||
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
||||||
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
||||||
y = tf.concat([xy, wh, y[..., 4:]], -1)
|
y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1)
|
||||||
z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
|
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
|
||||||
|
|
||||||
return x if self.training else (tf.concat(z, 1), x)
|
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _make_grid(nx=20, ny=20):
|
def _make_grid(nx=20, ny=20):
|
||||||
@ -277,11 +320,44 @@ class TFDetect(keras.layers.Layer):
|
|||||||
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
||||||
|
|
||||||
|
|
||||||
|
class TFSegment(TFDetect):
|
||||||
|
# YOLOv3 Segment head for segmentation models
|
||||||
|
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
|
||||||
|
super().__init__(nc, anchors, ch, imgsz, w)
|
||||||
|
self.nm = nm # number of masks
|
||||||
|
self.npr = npr # number of protos
|
||||||
|
self.no = 5 + nc + self.nm # number of outputs per anchor
|
||||||
|
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
|
||||||
|
self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
|
||||||
|
self.detect = TFDetect.call
|
||||||
|
|
||||||
|
def call(self, x):
|
||||||
|
p = self.proto(x[0])
|
||||||
|
# p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
|
||||||
|
p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
|
||||||
|
x = self.detect(self, x)
|
||||||
|
return (x, p) if self.training else (x[0], p)
|
||||||
|
|
||||||
|
|
||||||
|
class TFProto(keras.layers.Layer):
|
||||||
|
|
||||||
|
def __init__(self, c1, c_=256, c2=32, w=None):
|
||||||
|
super().__init__()
|
||||||
|
self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
|
||||||
|
self.upsample = TFUpsample(None, scale_factor=2, mode='nearest')
|
||||||
|
self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
|
||||||
|
self.cv3 = TFConv(c_, c2, w=w.cv3)
|
||||||
|
|
||||||
|
def call(self, inputs):
|
||||||
|
return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
|
||||||
|
|
||||||
|
|
||||||
class TFUpsample(keras.layers.Layer):
|
class TFUpsample(keras.layers.Layer):
|
||||||
|
# TF version of torch.nn.Upsample()
|
||||||
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert scale_factor == 2, "scale_factor must be 2"
|
assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
|
||||||
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
|
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
|
||||||
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
||||||
# with default arguments: align_corners=False, half_pixel_centers=False
|
# with default arguments: align_corners=False, half_pixel_centers=False
|
||||||
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
||||||
@ -292,6 +368,7 @@ class TFUpsample(keras.layers.Layer):
|
|||||||
|
|
||||||
|
|
||||||
class TFConcat(keras.layers.Layer):
|
class TFConcat(keras.layers.Layer):
|
||||||
|
# TF version of torch.concat()
|
||||||
def __init__(self, dimension=1, w=None):
|
def __init__(self, dimension=1, w=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert dimension == 1, "convert only NCHW to NHWC concat"
|
assert dimension == 1, "convert only NCHW to NHWC concat"
|
||||||
@ -318,22 +395,26 @@ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||||
if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
|
if m in [
|
||||||
|
nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
|
||||||
|
BottleneckCSP, C3, C3x]:
|
||||||
c1, c2 = ch[f], args[0]
|
c1, c2 = ch[f], args[0]
|
||||||
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
||||||
|
|
||||||
args = [c1, c2, *args[1:]]
|
args = [c1, c2, *args[1:]]
|
||||||
if m in [BottleneckCSP, C3]:
|
if m in [BottleneckCSP, C3, C3x]:
|
||||||
args.insert(2, n)
|
args.insert(2, n)
|
||||||
n = 1
|
n = 1
|
||||||
elif m is nn.BatchNorm2d:
|
elif m is nn.BatchNorm2d:
|
||||||
args = [ch[f]]
|
args = [ch[f]]
|
||||||
elif m is Concat:
|
elif m is Concat:
|
||||||
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
||||||
elif m is Detect:
|
elif m in [Detect, Segment]:
|
||||||
args.append([ch[x + 1] for x in f])
|
args.append([ch[x + 1] for x in f])
|
||||||
if isinstance(args[1], int): # number of anchors
|
if isinstance(args[1], int): # number of anchors
|
||||||
args[1] = [list(range(args[1] * 2))] * len(f)
|
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||||
|
if m is Segment:
|
||||||
|
args[3] = make_divisible(args[3] * gw, 8)
|
||||||
args.append(imgsz)
|
args.append(imgsz)
|
||||||
else:
|
else:
|
||||||
c2 = ch[f]
|
c2 = ch[f]
|
||||||
@ -354,7 +435,8 @@ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
|||||||
|
|
||||||
|
|
||||||
class TFModel:
|
class TFModel:
|
||||||
def __init__(self, cfg='yolov3.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
# TF YOLOv3 model
|
||||||
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if isinstance(cfg, dict):
|
if isinstance(cfg, dict):
|
||||||
self.yaml = cfg # model dict
|
self.yaml = cfg # model dict
|
||||||
@ -370,11 +452,17 @@ class TFModel:
|
|||||||
self.yaml['nc'] = nc # override yaml value
|
self.yaml['nc'] = nc # override yaml value
|
||||||
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
||||||
|
|
||||||
def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
def predict(self,
|
||||||
|
inputs,
|
||||||
|
tf_nms=False,
|
||||||
|
agnostic_nms=False,
|
||||||
|
topk_per_class=100,
|
||||||
|
topk_all=100,
|
||||||
|
iou_thres=0.45,
|
||||||
conf_thres=0.25):
|
conf_thres=0.25):
|
||||||
y = [] # outputs
|
y = [] # outputs
|
||||||
x = inputs
|
x = inputs
|
||||||
for i, m in enumerate(self.model.layers):
|
for m in self.model.layers:
|
||||||
if m.f != -1: # if not from previous layer
|
if m.f != -1: # if not from previous layer
|
||||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||||
|
|
||||||
@ -389,15 +477,18 @@ class TFModel:
|
|||||||
scores = probs * classes
|
scores = probs * classes
|
||||||
if agnostic_nms:
|
if agnostic_nms:
|
||||||
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
||||||
return nms, x[1]
|
|
||||||
else:
|
else:
|
||||||
boxes = tf.expand_dims(boxes, 2)
|
boxes = tf.expand_dims(boxes, 2)
|
||||||
nms = tf.image.combined_non_max_suppression(
|
nms = tf.image.combined_non_max_suppression(boxes,
|
||||||
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
|
scores,
|
||||||
return nms, x[1]
|
topk_per_class,
|
||||||
|
topk_all,
|
||||||
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
|
iou_thres,
|
||||||
# x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
|
conf_thres,
|
||||||
|
clip_boxes=False)
|
||||||
|
return (nms,)
|
||||||
|
return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
|
||||||
|
# x = x[0] # [x(1,6300,85), ...] to x(6300,85)
|
||||||
# xywh = x[..., :4] # x(6300,4) boxes
|
# xywh = x[..., :4] # x(6300,4) boxes
|
||||||
# conf = x[..., 4:5] # x(6300,1) confidences
|
# conf = x[..., 4:5] # x(6300,1) confidences
|
||||||
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
||||||
@ -414,7 +505,8 @@ class AgnosticNMS(keras.layers.Layer):
|
|||||||
# TF Agnostic NMS
|
# TF Agnostic NMS
|
||||||
def call(self, input, topk_all, iou_thres, conf_thres):
|
def call(self, input, topk_all, iou_thres, conf_thres):
|
||||||
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
||||||
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input,
|
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
|
||||||
|
input,
|
||||||
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
||||||
name='agnostic_nms')
|
name='agnostic_nms')
|
||||||
|
|
||||||
@ -423,50 +515,69 @@ class AgnosticNMS(keras.layers.Layer):
|
|||||||
boxes, classes, scores = x
|
boxes, classes, scores = x
|
||||||
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
||||||
scores_inp = tf.reduce_max(scores, -1)
|
scores_inp = tf.reduce_max(scores, -1)
|
||||||
selected_inds = tf.image.non_max_suppression(
|
selected_inds = tf.image.non_max_suppression(boxes,
|
||||||
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
|
scores_inp,
|
||||||
|
max_output_size=topk_all,
|
||||||
|
iou_threshold=iou_thres,
|
||||||
|
score_threshold=conf_thres)
|
||||||
selected_boxes = tf.gather(boxes, selected_inds)
|
selected_boxes = tf.gather(boxes, selected_inds)
|
||||||
padded_boxes = tf.pad(selected_boxes,
|
padded_boxes = tf.pad(selected_boxes,
|
||||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
||||||
mode="CONSTANT", constant_values=0.0)
|
mode="CONSTANT",
|
||||||
|
constant_values=0.0)
|
||||||
selected_scores = tf.gather(scores_inp, selected_inds)
|
selected_scores = tf.gather(scores_inp, selected_inds)
|
||||||
padded_scores = tf.pad(selected_scores,
|
padded_scores = tf.pad(selected_scores,
|
||||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
||||||
mode="CONSTANT", constant_values=-1.0)
|
mode="CONSTANT",
|
||||||
|
constant_values=-1.0)
|
||||||
selected_classes = tf.gather(class_inds, selected_inds)
|
selected_classes = tf.gather(class_inds, selected_inds)
|
||||||
padded_classes = tf.pad(selected_classes,
|
padded_classes = tf.pad(selected_classes,
|
||||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
||||||
mode="CONSTANT", constant_values=-1.0)
|
mode="CONSTANT",
|
||||||
|
constant_values=-1.0)
|
||||||
valid_detections = tf.shape(selected_inds)[0]
|
valid_detections = tf.shape(selected_inds)[0]
|
||||||
return padded_boxes, padded_scores, padded_classes, valid_detections
|
return padded_boxes, padded_scores, padded_classes, valid_detections
|
||||||
|
|
||||||
|
|
||||||
|
def activations(act=nn.SiLU):
|
||||||
|
# Returns TF activation from input PyTorch activation
|
||||||
|
if isinstance(act, nn.LeakyReLU):
|
||||||
|
return lambda x: keras.activations.relu(x, alpha=0.1)
|
||||||
|
elif isinstance(act, nn.Hardswish):
|
||||||
|
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
|
||||||
|
elif isinstance(act, (nn.SiLU, SiLU)):
|
||||||
|
return lambda x: keras.activations.swish(x)
|
||||||
|
else:
|
||||||
|
raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
|
||||||
|
|
||||||
|
|
||||||
def representative_dataset_gen(dataset, ncalib=100):
|
def representative_dataset_gen(dataset, ncalib=100):
|
||||||
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
||||||
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
||||||
input = np.transpose(img, [1, 2, 0])
|
im = np.transpose(img, [1, 2, 0])
|
||||||
input = np.expand_dims(input, axis=0).astype(np.float32)
|
im = np.expand_dims(im, axis=0).astype(np.float32)
|
||||||
input /= 255
|
im /= 255
|
||||||
yield [input]
|
yield [im]
|
||||||
if n >= ncalib:
|
if n >= ncalib:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
||||||
def run(weights=ROOT / 'yolov3.pt', # weights path
|
def run(
|
||||||
|
weights=ROOT / 'yolov5s.pt', # weights path
|
||||||
imgsz=(640, 640), # inference size h,w
|
imgsz=(640, 640), # inference size h,w
|
||||||
batch_size=1, # batch size
|
batch_size=1, # batch size
|
||||||
dynamic=False, # dynamic batch size
|
dynamic=False, # dynamic batch size
|
||||||
):
|
):
|
||||||
# PyTorch model
|
# PyTorch model
|
||||||
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
||||||
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
|
model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
|
||||||
y = model(im) # inference
|
_ = model(im) # inference
|
||||||
model.info()
|
model.info()
|
||||||
|
|
||||||
# TensorFlow model
|
# TensorFlow model
|
||||||
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
||||||
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||||||
y = tf_model.predict(im) # inference
|
_ = tf_model.predict(im) # inference
|
||||||
|
|
||||||
# Keras model
|
# Keras model
|
||||||
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
||||||
@ -476,146 +587,15 @@ def run(weights=ROOT / 'yolov3.pt', # weights path
|
|||||||
LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
|
LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
|
||||||
|
|
||||||
|
|
||||||
@keras_export("keras.layers.ZeroPadding2D")
|
|
||||||
class ZeroPadding2D(Layer):
|
|
||||||
"""Zero-padding layer for 2D input (e.g. picture).
|
|
||||||
|
|
||||||
This layer can add rows and columns of zeros
|
|
||||||
at the top, bottom, left and right side of an image tensor.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
|
|
||||||
>>> input_shape = (1, 1, 2, 2)
|
|
||||||
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
|
|
||||||
>>> print(x)
|
|
||||||
[[[[0 1]
|
|
||||||
[2 3]]]]
|
|
||||||
>>> y = tf.keras.layers.ZeroPadding2D(padding=1)(x)
|
|
||||||
>>> print(y)
|
|
||||||
tf.Tensor(
|
|
||||||
[[[[0 0]
|
|
||||||
[0 0]
|
|
||||||
[0 0]
|
|
||||||
[0 0]]
|
|
||||||
[[0 0]
|
|
||||||
[0 1]
|
|
||||||
[2 3]
|
|
||||||
[0 0]]
|
|
||||||
[[0 0]
|
|
||||||
[0 0]
|
|
||||||
[0 0]
|
|
||||||
[0 0]]]], shape=(1, 3, 4, 2), dtype=int64)
|
|
||||||
|
|
||||||
Args:
|
|
||||||
padding: Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
|
|
||||||
- If int: the same symmetric padding
|
|
||||||
is applied to height and width.
|
|
||||||
- If tuple of 2 ints:
|
|
||||||
interpreted as two different
|
|
||||||
symmetric padding values for height and width:
|
|
||||||
`(symmetric_height_pad, symmetric_width_pad)`.
|
|
||||||
- If tuple of 2 tuples of 2 ints:
|
|
||||||
interpreted as
|
|
||||||
`((top_pad, bottom_pad), (left_pad, right_pad))`
|
|
||||||
data_format: A string,
|
|
||||||
one of `channels_last` (default) or `channels_first`.
|
|
||||||
The ordering of the dimensions in the inputs.
|
|
||||||
`channels_last` corresponds to inputs with shape
|
|
||||||
`(batch_size, height, width, channels)` while `channels_first`
|
|
||||||
corresponds to inputs with shape
|
|
||||||
`(batch_size, channels, height, width)`.
|
|
||||||
It defaults to the `image_data_format` value found in your
|
|
||||||
Keras config file at `~/.keras/keras.json`.
|
|
||||||
If you never set it, then it will be "channels_last".
|
|
||||||
|
|
||||||
Input shape:
|
|
||||||
4D tensor with shape:
|
|
||||||
- If `data_format` is `"channels_last"`:
|
|
||||||
`(batch_size, rows, cols, channels)`
|
|
||||||
- If `data_format` is `"channels_first"`:
|
|
||||||
`(batch_size, channels, rows, cols)`
|
|
||||||
|
|
||||||
Output shape:
|
|
||||||
4D tensor with shape:
|
|
||||||
- If `data_format` is `"channels_last"`:
|
|
||||||
`(batch_size, padded_rows, padded_cols, channels)`
|
|
||||||
- If `data_format` is `"channels_first"`:
|
|
||||||
`(batch_size, channels, padded_rows, padded_cols)`
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, padding=(1, 1), data_format=None, **kwargs):
|
|
||||||
super().__init__(**kwargs)
|
|
||||||
self.data_format = conv_utils.normalize_data_format(data_format)
|
|
||||||
if isinstance(padding, int):
|
|
||||||
self.padding = ((padding, padding), (padding, padding))
|
|
||||||
elif hasattr(padding, "__len__"):
|
|
||||||
if len(padding) == 4:
|
|
||||||
padding = ((padding[0], padding[1]), (padding[2], padding[3]))
|
|
||||||
if len(padding) != 2:
|
|
||||||
raise ValueError(
|
|
||||||
f"`padding` should have two elements. Received: {padding}."
|
|
||||||
)
|
|
||||||
height_padding = conv_utils.normalize_tuple(
|
|
||||||
padding[0], 2, "1st entry of padding", allow_zero=True
|
|
||||||
)
|
|
||||||
width_padding = conv_utils.normalize_tuple(
|
|
||||||
padding[1], 2, "2nd entry of padding", allow_zero=True
|
|
||||||
)
|
|
||||||
self.padding = (height_padding, width_padding)
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
"`padding` should be either an int, "
|
|
||||||
"a tuple of 2 ints "
|
|
||||||
"(symmetric_height_pad, symmetric_width_pad), "
|
|
||||||
"or a tuple of 2 tuples of 2 ints "
|
|
||||||
"((top_pad, bottom_pad), (left_pad, right_pad)). "
|
|
||||||
f"Received: {padding}."
|
|
||||||
)
|
|
||||||
self.input_spec = InputSpec(ndim=4)
|
|
||||||
|
|
||||||
def compute_output_shape(self, input_shape):
|
|
||||||
input_shape = tf.TensorShape(input_shape).as_list()
|
|
||||||
if self.data_format == "channels_first":
|
|
||||||
if input_shape[2] is not None:
|
|
||||||
rows = input_shape[2] + self.padding[0][0] + self.padding[0][1]
|
|
||||||
else:
|
|
||||||
rows = None
|
|
||||||
if input_shape[3] is not None:
|
|
||||||
cols = input_shape[3] + self.padding[1][0] + self.padding[1][1]
|
|
||||||
else:
|
|
||||||
cols = None
|
|
||||||
return tf.TensorShape([input_shape[0], input_shape[1], rows, cols])
|
|
||||||
elif self.data_format == "channels_last":
|
|
||||||
if input_shape[1] is not None:
|
|
||||||
rows = input_shape[1] + self.padding[0][0] + self.padding[0][1]
|
|
||||||
else:
|
|
||||||
rows = None
|
|
||||||
if input_shape[2] is not None:
|
|
||||||
cols = input_shape[2] + self.padding[1][0] + self.padding[1][1]
|
|
||||||
else:
|
|
||||||
cols = None
|
|
||||||
return tf.TensorShape([input_shape[0], rows, cols, input_shape[3]])
|
|
||||||
|
|
||||||
def call(self, inputs):
|
|
||||||
return backend.spatial_2d_padding(
|
|
||||||
inputs, padding=self.padding, data_format=self.data_format
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {"padding": self.padding, "data_format": self.data_format}
|
|
||||||
base_config = super().get_config()
|
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
|
||||||
|
|
||||||
|
|
||||||
def parse_opt():
|
def parse_opt():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--weights', type=str, default=ROOT / 'yolov3.pt', help='weights path')
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
||||||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
||||||
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||||
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
||||||
opt = parser.parse_args()
|
opt = parser.parse_args()
|
||||||
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||||
print_args(FILE.stem, opt)
|
print_args(vars(opt))
|
||||||
return opt
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
288
models/yolo.py
288
models/yolo.py
@ -3,26 +3,29 @@
|
|||||||
YOLO-specific modules
|
YOLO-specific modules
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
$ python path/to/models/yolo.py --cfg yolov3.yaml
|
$ python models/yolo.py --cfg yolov5s.yaml
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
import sys
|
import sys
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
FILE = Path(__file__).resolve()
|
FILE = Path(__file__).resolve()
|
||||||
ROOT = FILE.parents[1] # root directory
|
ROOT = FILE.parents[1] # YOLOv3 root directory
|
||||||
if str(ROOT) not in sys.path:
|
if str(ROOT) not in sys.path:
|
||||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
if platform.system() != 'Windows':
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
from models.common import *
|
from models.common import *
|
||||||
from models.experimental import *
|
from models.experimental import *
|
||||||
from utils.autoanchor import check_anchor_order
|
from utils.autoanchor import check_anchor_order
|
||||||
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
|
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
|
||||||
from utils.plots import feature_visualization
|
from utils.plots import feature_visualization
|
||||||
from utils.torch_utils import (copy_attr, fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device,
|
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
|
||||||
time_sync)
|
time_sync)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -32,8 +35,10 @@ except ImportError:
|
|||||||
|
|
||||||
|
|
||||||
class Detect(nn.Module):
|
class Detect(nn.Module):
|
||||||
|
# YOLOv3 Detect head for detection models
|
||||||
stride = None # strides computed during build
|
stride = None # strides computed during build
|
||||||
onnx_dynamic = False # ONNX export parameter
|
dynamic = False # force grid reconstruction
|
||||||
|
export = False # export mode
|
||||||
|
|
||||||
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
|
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -41,11 +46,11 @@ class Detect(nn.Module):
|
|||||||
self.no = nc + 5 # number of outputs per anchor
|
self.no = nc + 5 # number of outputs per anchor
|
||||||
self.nl = len(anchors) # number of detection layers
|
self.nl = len(anchors) # number of detection layers
|
||||||
self.na = len(anchors[0]) // 2 # number of anchors
|
self.na = len(anchors[0]) // 2 # number of anchors
|
||||||
self.grid = [torch.zeros(1)] * self.nl # init grid
|
self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid
|
||||||
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
|
self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid
|
||||||
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
||||||
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||||
self.inplace = inplace # use in-place ops (e.g. slice assignment)
|
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
z = [] # inference output
|
z = [] # inference output
|
||||||
@ -55,35 +60,110 @@ class Detect(nn.Module):
|
|||||||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||||
|
|
||||||
if not self.training: # inference
|
if not self.training: # inference
|
||||||
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||||
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
||||||
|
|
||||||
y = x[i].sigmoid()
|
if isinstance(self, Segment): # (boxes + masks)
|
||||||
if self.inplace:
|
xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
|
||||||
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
|
xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy
|
||||||
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh
|
||||||
else: # for on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
|
y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
|
||||||
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
|
else: # Detect (boxes only)
|
||||||
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
|
||||||
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
|
||||||
z.append(y.view(bs, -1, self.no))
|
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
|
||||||
|
y = torch.cat((xy, wh, conf), 4)
|
||||||
|
z.append(y.view(bs, self.na * nx * ny, self.no))
|
||||||
|
|
||||||
return x if self.training else (torch.cat(z, 1), x)
|
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
|
||||||
|
|
||||||
def _make_grid(self, nx=20, ny=20, i=0):
|
def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
|
||||||
d = self.anchors[i].device
|
d = self.anchors[i].device
|
||||||
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
|
t = self.anchors[i].dtype
|
||||||
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
|
shape = 1, self.na, ny, nx, 2 # grid shape
|
||||||
else:
|
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
|
||||||
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
|
yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility
|
||||||
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
|
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
|
||||||
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
|
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
|
||||||
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
|
|
||||||
return grid, anchor_grid
|
return grid, anchor_grid
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
class Segment(Detect):
|
||||||
def __init__(self, cfg='yolov3.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
# YOLOv3 Segment head for segmentation models
|
||||||
|
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
|
||||||
|
super().__init__(nc, anchors, ch, inplace)
|
||||||
|
self.nm = nm # number of masks
|
||||||
|
self.npr = npr # number of protos
|
||||||
|
self.no = 5 + nc + self.nm # number of outputs per anchor
|
||||||
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||||
|
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
||||||
|
self.detect = Detect.forward
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
p = self.proto(x[0])
|
||||||
|
x = self.detect(self, x)
|
||||||
|
return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
|
||||||
|
|
||||||
|
|
||||||
|
class BaseModel(nn.Module):
|
||||||
|
# YOLOv3 base model
|
||||||
|
def forward(self, x, profile=False, visualize=False):
|
||||||
|
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
||||||
|
|
||||||
|
def _forward_once(self, x, profile=False, visualize=False):
|
||||||
|
y, dt = [], [] # outputs
|
||||||
|
for m in self.model:
|
||||||
|
if m.f != -1: # if not from previous layer
|
||||||
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||||
|
if profile:
|
||||||
|
self._profile_one_layer(m, x, dt)
|
||||||
|
x = m(x) # run
|
||||||
|
y.append(x if m.i in self.save else None) # save output
|
||||||
|
if visualize:
|
||||||
|
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _profile_one_layer(self, m, x, dt):
|
||||||
|
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
||||||
|
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
||||||
|
t = time_sync()
|
||||||
|
for _ in range(10):
|
||||||
|
m(x.copy() if c else x)
|
||||||
|
dt.append((time_sync() - t) * 100)
|
||||||
|
if m == self.model[0]:
|
||||||
|
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
||||||
|
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
||||||
|
if c:
|
||||||
|
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
||||||
|
|
||||||
|
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||||
|
LOGGER.info('Fusing layers... ')
|
||||||
|
for m in self.model.modules():
|
||||||
|
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
||||||
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||||
|
delattr(m, 'bn') # remove batchnorm
|
||||||
|
m.forward = m.forward_fuse # update forward
|
||||||
|
self.info()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def info(self, verbose=False, img_size=640): # print model information
|
||||||
|
model_info(self, verbose, img_size)
|
||||||
|
|
||||||
|
def _apply(self, fn):
|
||||||
|
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
||||||
|
self = super()._apply(fn)
|
||||||
|
m = self.model[-1] # Detect()
|
||||||
|
if isinstance(m, (Detect, Segment)):
|
||||||
|
m.stride = fn(m.stride)
|
||||||
|
m.grid = list(map(fn, m.grid))
|
||||||
|
if isinstance(m.anchor_grid, list):
|
||||||
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
||||||
|
return self
|
||||||
|
|
||||||
|
|
||||||
|
class DetectionModel(BaseModel):
|
||||||
|
# YOLOv3 detection model
|
||||||
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if isinstance(cfg, dict):
|
if isinstance(cfg, dict):
|
||||||
self.yaml = cfg # model dict
|
self.yaml = cfg # model dict
|
||||||
@ -107,12 +187,13 @@ class Model(nn.Module):
|
|||||||
|
|
||||||
# Build strides, anchors
|
# Build strides, anchors
|
||||||
m = self.model[-1] # Detect()
|
m = self.model[-1] # Detect()
|
||||||
if isinstance(m, Detect):
|
if isinstance(m, (Detect, Segment)):
|
||||||
s = 256 # 2x min stride
|
s = 256 # 2x min stride
|
||||||
m.inplace = self.inplace
|
m.inplace = self.inplace
|
||||||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
|
||||||
m.anchors /= m.stride.view(-1, 1, 1)
|
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
check_anchor_order(m)
|
check_anchor_order(m)
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
self.stride = m.stride
|
self.stride = m.stride
|
||||||
self._initialize_biases() # only run once
|
self._initialize_biases() # only run once
|
||||||
|
|
||||||
@ -140,19 +221,6 @@ class Model(nn.Module):
|
|||||||
y = self._clip_augmented(y) # clip augmented tails
|
y = self._clip_augmented(y) # clip augmented tails
|
||||||
return torch.cat(y, 1), None # augmented inference, train
|
return torch.cat(y, 1), None # augmented inference, train
|
||||||
|
|
||||||
def _forward_once(self, x, profile=False, visualize=False):
|
|
||||||
y, dt = [], [] # outputs
|
|
||||||
for m in self.model:
|
|
||||||
if m.f != -1: # if not from previous layer
|
|
||||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
|
||||||
if profile:
|
|
||||||
self._profile_one_layer(m, x, dt)
|
|
||||||
x = m(x) # run
|
|
||||||
y.append(x if m.i in self.save else None) # save output
|
|
||||||
if visualize:
|
|
||||||
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
|
||||||
return x
|
|
||||||
|
|
||||||
def _descale_pred(self, p, flips, scale, img_size):
|
def _descale_pred(self, p, flips, scale, img_size):
|
||||||
# de-scale predictions following augmented inference (inverse operation)
|
# de-scale predictions following augmented inference (inverse operation)
|
||||||
if self.inplace:
|
if self.inplace:
|
||||||
@ -181,19 +249,6 @@ class Model(nn.Module):
|
|||||||
y[-1] = y[-1][:, i:] # small
|
y[-1] = y[-1][:, i:] # small
|
||||||
return y
|
return y
|
||||||
|
|
||||||
def _profile_one_layer(self, m, x, dt):
|
|
||||||
c = isinstance(m, Detect) # is final layer, copy input as inplace fix
|
|
||||||
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
|
||||||
t = time_sync()
|
|
||||||
for _ in range(10):
|
|
||||||
m(x.copy() if c else x)
|
|
||||||
dt.append((time_sync() - t) * 100)
|
|
||||||
if m == self.model[0]:
|
|
||||||
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
|
|
||||||
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
|
||||||
if c:
|
|
||||||
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
|
||||||
|
|
||||||
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
||||||
# https://arxiv.org/abs/1708.02002 section 3.3
|
# https://arxiv.org/abs/1708.02002 section 3.3
|
||||||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
||||||
@ -201,55 +256,52 @@ class Model(nn.Module):
|
|||||||
for mi, s in zip(m.m, m.stride): # from
|
for mi, s in zip(m.m, m.stride): # from
|
||||||
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
||||||
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
||||||
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
|
b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum()) # cls
|
||||||
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
||||||
|
|
||||||
def _print_biases(self):
|
|
||||||
m = self.model[-1] # Detect() module
|
|
||||||
for mi in m.m: # from
|
|
||||||
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
|
||||||
LOGGER.info(
|
|
||||||
('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
|
||||||
|
|
||||||
# def _print_weights(self):
|
Model = DetectionModel # retain 'Model' class for backwards compatibility
|
||||||
# for m in self.model.modules():
|
|
||||||
# if type(m) is Bottleneck:
|
|
||||||
# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
|
||||||
|
|
||||||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
|
||||||
LOGGER.info('Fusing layers... ')
|
|
||||||
for m in self.model.modules():
|
|
||||||
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
|
||||||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
|
||||||
delattr(m, 'bn') # remove batchnorm
|
|
||||||
m.forward = m.forward_fuse # update forward
|
|
||||||
self.info()
|
|
||||||
return self
|
|
||||||
|
|
||||||
def autoshape(self): # add AutoShape module
|
class SegmentationModel(DetectionModel):
|
||||||
LOGGER.info('Adding AutoShape... ')
|
# segmentation model
|
||||||
m = AutoShape(self) # wrap model
|
def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None):
|
||||||
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
super().__init__(cfg, ch, nc, anchors)
|
||||||
return m
|
|
||||||
|
|
||||||
def info(self, verbose=False, img_size=640): # print model information
|
|
||||||
model_info(self, verbose, img_size)
|
|
||||||
|
|
||||||
def _apply(self, fn):
|
class ClassificationModel(BaseModel):
|
||||||
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
# classification model
|
||||||
self = super()._apply(fn)
|
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
|
||||||
m = self.model[-1] # Detect()
|
super().__init__()
|
||||||
if isinstance(m, Detect):
|
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
||||||
m.stride = fn(m.stride)
|
|
||||||
m.grid = list(map(fn, m.grid))
|
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
||||||
if isinstance(m.anchor_grid, list):
|
# Create a classification model from a detection model
|
||||||
m.anchor_grid = list(map(fn, m.anchor_grid))
|
if isinstance(model, DetectMultiBackend):
|
||||||
return self
|
model = model.model # unwrap DetectMultiBackend
|
||||||
|
model.model = model.model[:cutoff] # backbone
|
||||||
|
m = model.model[-1] # last layer
|
||||||
|
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
|
||||||
|
c = Classify(ch, nc) # Classify()
|
||||||
|
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
|
||||||
|
model.model[-1] = c # replace
|
||||||
|
self.model = model.model
|
||||||
|
self.stride = model.stride
|
||||||
|
self.save = []
|
||||||
|
self.nc = nc
|
||||||
|
|
||||||
|
def _from_yaml(self, cfg):
|
||||||
|
# Create a classification model from a *.yaml file
|
||||||
|
self.model = None
|
||||||
|
|
||||||
|
|
||||||
def parse_model(d, ch): # model_dict, input_channels(3)
|
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||||
|
# Parse a model.yaml dictionary
|
||||||
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
||||||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
||||||
|
if act:
|
||||||
|
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
||||||
|
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
||||||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||||
|
|
||||||
@ -257,30 +309,32 @@ def parse_model(d, ch): # model_dict, input_channels(3)
|
|||||||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||||
m = eval(m) if isinstance(m, str) else m # eval strings
|
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||||
for j, a in enumerate(args):
|
for j, a in enumerate(args):
|
||||||
try:
|
with contextlib.suppress(NameError):
|
||||||
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||||
except NameError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||||
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
|
if m in {
|
||||||
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
|
Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
|
||||||
|
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
|
||||||
c1, c2 = ch[f], args[0]
|
c1, c2 = ch[f], args[0]
|
||||||
if c2 != no: # if not output
|
if c2 != no: # if not output
|
||||||
c2 = make_divisible(c2 * gw, 8)
|
c2 = make_divisible(c2 * gw, 8)
|
||||||
|
|
||||||
args = [c1, c2, *args[1:]]
|
args = [c1, c2, *args[1:]]
|
||||||
if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
|
if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
|
||||||
args.insert(2, n) # number of repeats
|
args.insert(2, n) # number of repeats
|
||||||
n = 1
|
n = 1
|
||||||
elif m is nn.BatchNorm2d:
|
elif m is nn.BatchNorm2d:
|
||||||
args = [ch[f]]
|
args = [ch[f]]
|
||||||
elif m is Concat:
|
elif m is Concat:
|
||||||
c2 = sum(ch[x] for x in f)
|
c2 = sum(ch[x] for x in f)
|
||||||
elif m is Detect:
|
# TODO: channel, gw, gd
|
||||||
|
elif m in {Detect, Segment}:
|
||||||
args.append([ch[x] for x in f])
|
args.append([ch[x] for x in f])
|
||||||
if isinstance(args[1], int): # number of anchors
|
if isinstance(args[1], int): # number of anchors
|
||||||
args[1] = [list(range(args[1] * 2))] * len(f)
|
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||||
|
if m is Segment:
|
||||||
|
args[3] = make_divisible(args[3] * gw, 8)
|
||||||
elif m is Contract:
|
elif m is Contract:
|
||||||
c2 = ch[f] * args[0] ** 2
|
c2 = ch[f] * args[0] ** 2
|
||||||
elif m is Expand:
|
elif m is Expand:
|
||||||
@ -303,34 +357,34 @@ def parse_model(d, ch): # model_dict, input_channels(3)
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--cfg', type=str, default='yolov3yaml', help='model.yaml')
|
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
|
||||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
||||||
|
parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
|
||||||
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
|
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
|
||||||
opt = parser.parse_args()
|
opt = parser.parse_args()
|
||||||
opt.cfg = check_yaml(opt.cfg) # check YAML
|
opt.cfg = check_yaml(opt.cfg) # check YAML
|
||||||
print_args(FILE.stem, opt)
|
print_args(vars(opt))
|
||||||
device = select_device(opt.device)
|
device = select_device(opt.device)
|
||||||
|
|
||||||
# Create model
|
# Create model
|
||||||
|
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
|
||||||
model = Model(opt.cfg).to(device)
|
model = Model(opt.cfg).to(device)
|
||||||
model.train()
|
|
||||||
|
|
||||||
# Profile
|
# Options
|
||||||
if opt.profile:
|
if opt.line_profile: # profile layer by layer
|
||||||
img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
model(im, profile=True)
|
||||||
y = model(img, profile=True)
|
|
||||||
|
|
||||||
# Test all models
|
elif opt.profile: # profile forward-backward
|
||||||
if opt.test:
|
results = profile(input=im, ops=[model], n=3)
|
||||||
|
|
||||||
|
elif opt.test: # test all models
|
||||||
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
||||||
try:
|
try:
|
||||||
_ = Model(cfg)
|
_ = Model(cfg)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f'Error in {cfg}: {e}')
|
print(f'Error in {cfg}: {e}')
|
||||||
|
|
||||||
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
|
else: # report fused model summary
|
||||||
# from torch.utils.tensorboard import SummaryWriter
|
model.fuse()
|
||||||
# tb_writer = SummaryWriter('.')
|
|
||||||
# LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
|
|
||||||
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
|
|
||||||
|
|||||||
48
models/yolov5l.yaml
Normal file
48
models/yolov5l.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/yolov5m.yaml
Normal file
48
models/yolov5m.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.67 # model depth multiple
|
||||||
|
width_multiple: 0.75 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/yolov5n.yaml
Normal file
48
models/yolov5n.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.25 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/yolov5s.yaml
Normal file
48
models/yolov5s.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
48
models/yolov5x.yaml
Normal file
48
models/yolov5x.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.33 # model depth multiple
|
||||||
|
width_multiple: 1.25 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
30
requirements.txt
Executable file → Normal file
30
requirements.txt
Executable file → Normal file
@ -1,31 +1,35 @@
|
|||||||
# YOLOv3 requirements
|
# YOLOv3 requirements
|
||||||
# Usage: pip install -r requirements.txt
|
# Usage: pip install -r requirements.txt
|
||||||
|
|
||||||
# Base ----------------------------------------
|
# Base ------------------------------------------------------------------------
|
||||||
|
gitpython
|
||||||
|
ipython # interactive notebook
|
||||||
matplotlib>=3.2.2
|
matplotlib>=3.2.2
|
||||||
numpy>=1.18.5
|
numpy>=1.18.5
|
||||||
opencv-python>=4.1.1
|
opencv-python>=4.1.1
|
||||||
Pillow>=7.1.2
|
Pillow>=7.1.2
|
||||||
|
psutil # system resources
|
||||||
PyYAML>=5.3.1
|
PyYAML>=5.3.1
|
||||||
requests>=2.23.0
|
requests>=2.23.0
|
||||||
scipy>=1.4.1
|
scipy>=1.4.1
|
||||||
torch>=1.7.0 # see https://pytorch.org/get-started/locally/ (recommended)
|
thop>=0.1.1 # FLOPs computation
|
||||||
|
torch>=1.7.0 # see https://pytorch.org/get-started/locally (recommended)
|
||||||
torchvision>=0.8.1
|
torchvision>=0.8.1
|
||||||
tqdm>=4.64.0
|
tqdm>=4.64.0
|
||||||
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
|
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
|
||||||
|
|
||||||
# Logging -------------------------------------
|
# Logging ---------------------------------------------------------------------
|
||||||
tensorboard>=2.4.1
|
tensorboard>=2.4.1
|
||||||
# clearml
|
# clearml>=1.2.0
|
||||||
# comet
|
# comet
|
||||||
|
|
||||||
# Plotting ------------------------------------
|
# Plotting --------------------------------------------------------------------
|
||||||
pandas>=1.1.4
|
pandas>=1.1.4
|
||||||
seaborn>=0.11.0
|
seaborn>=0.11.0
|
||||||
|
|
||||||
# Export --------------------------------------
|
# Export ----------------------------------------------------------------------
|
||||||
# coremltools>=6.0 # CoreML export
|
# coremltools>=6.0 # CoreML export
|
||||||
# onnx>=1.9.0 # ONNX export
|
# onnx>=1.12.0 # ONNX export
|
||||||
# onnx-simplifier>=0.4.1 # ONNX simplifier
|
# onnx-simplifier>=0.4.1 # ONNX simplifier
|
||||||
# nvidia-pyindex # TensorRT export
|
# nvidia-pyindex # TensorRT export
|
||||||
# nvidia-tensorrt # TensorRT export
|
# nvidia-tensorrt # TensorRT export
|
||||||
@ -34,14 +38,14 @@ seaborn>=0.11.0
|
|||||||
# tensorflowjs>=3.9.0 # TF.js export
|
# tensorflowjs>=3.9.0 # TF.js export
|
||||||
# openvino-dev # OpenVINO export
|
# openvino-dev # OpenVINO export
|
||||||
|
|
||||||
# Deploy --------------------------------------
|
# Deploy ----------------------------------------------------------------------
|
||||||
|
setuptools>=65.5.1 # Snyk vulnerability fix
|
||||||
|
wheel>=0.38.0 # Snyk vulnerability fix
|
||||||
# tritonclient[all]~=2.24.0
|
# tritonclient[all]~=2.24.0
|
||||||
|
|
||||||
# Extras --------------------------------------
|
# Extras ----------------------------------------------------------------------
|
||||||
ipython # interactive notebook
|
|
||||||
psutil # system utilization
|
|
||||||
thop>=0.1.1 # FLOPs computation
|
|
||||||
# mss # screenshots
|
# mss # screenshots
|
||||||
# albumentations>=1.0.3
|
# albumentations>=1.0.3
|
||||||
# pycocotools>=2.0 # COCO mAP
|
# pycocotools>=2.0.6 # COCO mAP
|
||||||
# roboflow
|
# roboflow
|
||||||
|
# ultralytics # HUB https://hub.ultralytics.com
|
||||||
|
|||||||
284
segment/predict.py
Normal file
284
segment/predict.py
Normal file
@ -0,0 +1,284 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Run segmentation inference on images, videos, directories, streams, etc.
|
||||||
|
|
||||||
|
Usage - sources:
|
||||||
|
$ python segment/predict.py --weights yolov5s-seg.pt --source 0 # webcam
|
||||||
|
img.jpg # image
|
||||||
|
vid.mp4 # video
|
||||||
|
screen # screenshot
|
||||||
|
path/ # directory
|
||||||
|
list.txt # list of images
|
||||||
|
list.streams # list of streams
|
||||||
|
'path/*.jpg' # glob
|
||||||
|
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||||
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||||
|
|
||||||
|
Usage - formats:
|
||||||
|
$ python segment/predict.py --weights yolov5s-seg.pt # PyTorch
|
||||||
|
yolov5s-seg.torchscript # TorchScript
|
||||||
|
yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||||
|
yolov5s-seg_openvino_model # OpenVINO
|
||||||
|
yolov5s-seg.engine # TensorRT
|
||||||
|
yolov5s-seg.mlmodel # CoreML (macOS-only)
|
||||||
|
yolov5s-seg_saved_model # TensorFlow SavedModel
|
||||||
|
yolov5s-seg.pb # TensorFlow GraphDef
|
||||||
|
yolov5s-seg.tflite # TensorFlow Lite
|
||||||
|
yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU
|
||||||
|
yolov5s-seg_paddle_model # PaddlePaddle
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[1] # root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
|
from models.common import DetectMultiBackend
|
||||||
|
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
||||||
|
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
||||||
|
increment_path, non_max_suppression, print_args, scale_boxes, scale_segments,
|
||||||
|
strip_optimizer)
|
||||||
|
from utils.plots import Annotator, colors, save_one_box
|
||||||
|
from utils.segment.general import masks2segments, process_mask, process_mask_native
|
||||||
|
from utils.torch_utils import select_device, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
|
@smart_inference_mode()
|
||||||
|
def run(
|
||||||
|
weights=ROOT / 'yolov5s-seg.pt', # model.pt path(s)
|
||||||
|
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
||||||
|
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||||
|
imgsz=(640, 640), # inference size (height, width)
|
||||||
|
conf_thres=0.25, # confidence threshold
|
||||||
|
iou_thres=0.45, # NMS IOU threshold
|
||||||
|
max_det=1000, # maximum detections per image
|
||||||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
|
view_img=False, # show results
|
||||||
|
save_txt=False, # save results to *.txt
|
||||||
|
save_conf=False, # save confidences in --save-txt labels
|
||||||
|
save_crop=False, # save cropped prediction boxes
|
||||||
|
nosave=False, # do not save images/videos
|
||||||
|
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||||||
|
agnostic_nms=False, # class-agnostic NMS
|
||||||
|
augment=False, # augmented inference
|
||||||
|
visualize=False, # visualize features
|
||||||
|
update=False, # update all models
|
||||||
|
project=ROOT / 'runs/predict-seg', # save results to project/name
|
||||||
|
name='exp', # save results to project/name
|
||||||
|
exist_ok=False, # existing project/name ok, do not increment
|
||||||
|
line_thickness=3, # bounding box thickness (pixels)
|
||||||
|
hide_labels=False, # hide labels
|
||||||
|
hide_conf=False, # hide confidences
|
||||||
|
half=False, # use FP16 half-precision inference
|
||||||
|
dnn=False, # use OpenCV DNN for ONNX inference
|
||||||
|
vid_stride=1, # video frame-rate stride
|
||||||
|
retina_masks=False,
|
||||||
|
):
|
||||||
|
source = str(source)
|
||||||
|
save_img = not nosave and not source.endswith('.txt') # save inference images
|
||||||
|
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
||||||
|
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
||||||
|
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
|
||||||
|
screenshot = source.lower().startswith('screen')
|
||||||
|
if is_url and is_file:
|
||||||
|
source = check_file(source) # download
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||||
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
device = select_device(device)
|
||||||
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||||
|
stride, names, pt = model.stride, model.names, model.pt
|
||||||
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
|
||||||
|
# Dataloader
|
||||||
|
bs = 1 # batch_size
|
||||||
|
if webcam:
|
||||||
|
view_img = check_imshow(warn=True)
|
||||||
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||||
|
bs = len(dataset)
|
||||||
|
elif screenshot:
|
||||||
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||||
|
else:
|
||||||
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||||
|
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||||
|
|
||||||
|
# Run inference
|
||||||
|
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
|
||||||
|
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
||||||
|
for path, im, im0s, vid_cap, s in dataset:
|
||||||
|
with dt[0]:
|
||||||
|
im = torch.from_numpy(im).to(model.device)
|
||||||
|
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||||
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||||
|
if len(im.shape) == 3:
|
||||||
|
im = im[None] # expand for batch dim
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
with dt[1]:
|
||||||
|
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
||||||
|
pred, proto = model(im, augment=augment, visualize=visualize)[:2]
|
||||||
|
|
||||||
|
# NMS
|
||||||
|
with dt[2]:
|
||||||
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)
|
||||||
|
|
||||||
|
# Second-stage classifier (optional)
|
||||||
|
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
||||||
|
|
||||||
|
# Process predictions
|
||||||
|
for i, det in enumerate(pred): # per image
|
||||||
|
seen += 1
|
||||||
|
if webcam: # batch_size >= 1
|
||||||
|
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
||||||
|
s += f'{i}: '
|
||||||
|
else:
|
||||||
|
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
||||||
|
|
||||||
|
p = Path(p) # to Path
|
||||||
|
save_path = str(save_dir / p.name) # im.jpg
|
||||||
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
||||||
|
s += '%gx%g ' % im.shape[2:] # print string
|
||||||
|
imc = im0.copy() if save_crop else im0 # for save_crop
|
||||||
|
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
||||||
|
if len(det):
|
||||||
|
if retina_masks:
|
||||||
|
# scale bbox first the crop masks
|
||||||
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size
|
||||||
|
masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2]) # HWC
|
||||||
|
else:
|
||||||
|
masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
|
||||||
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size
|
||||||
|
|
||||||
|
# Segments
|
||||||
|
if save_txt:
|
||||||
|
segments = [
|
||||||
|
scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True)
|
||||||
|
for x in reversed(masks2segments(masks))]
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
for c in det[:, 5].unique():
|
||||||
|
n = (det[:, 5] == c).sum() # detections per class
|
||||||
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||||
|
|
||||||
|
# Mask plotting
|
||||||
|
annotator.masks(
|
||||||
|
masks,
|
||||||
|
colors=[colors(x, True) for x in det[:, 5]],
|
||||||
|
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous() /
|
||||||
|
255 if retina_masks else im[i])
|
||||||
|
|
||||||
|
# Write results
|
||||||
|
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
|
||||||
|
if save_txt: # Write to file
|
||||||
|
seg = segments[j].reshape(-1) # (n,2) to (n*2)
|
||||||
|
line = (cls, *seg, conf) if save_conf else (cls, *seg) # label format
|
||||||
|
with open(f'{txt_path}.txt', 'a') as f:
|
||||||
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||||
|
|
||||||
|
if save_img or save_crop or view_img: # Add bbox to image
|
||||||
|
c = int(cls) # integer class
|
||||||
|
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
||||||
|
annotator.box_label(xyxy, label, color=colors(c, True))
|
||||||
|
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
|
||||||
|
if save_crop:
|
||||||
|
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
||||||
|
|
||||||
|
# Stream results
|
||||||
|
im0 = annotator.result()
|
||||||
|
if view_img:
|
||||||
|
if platform.system() == 'Linux' and p not in windows:
|
||||||
|
windows.append(p)
|
||||||
|
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||||
|
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||||
|
cv2.imshow(str(p), im0)
|
||||||
|
if cv2.waitKey(1) == ord('q'): # 1 millisecond
|
||||||
|
exit()
|
||||||
|
|
||||||
|
# Save results (image with detections)
|
||||||
|
if save_img:
|
||||||
|
if dataset.mode == 'image':
|
||||||
|
cv2.imwrite(save_path, im0)
|
||||||
|
else: # 'video' or 'stream'
|
||||||
|
if vid_path[i] != save_path: # new video
|
||||||
|
vid_path[i] = save_path
|
||||||
|
if isinstance(vid_writer[i], cv2.VideoWriter):
|
||||||
|
vid_writer[i].release() # release previous video writer
|
||||||
|
if vid_cap: # video
|
||||||
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||||||
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
else: # stream
|
||||||
|
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||||
|
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
||||||
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||||
|
vid_writer[i].write(im0)
|
||||||
|
|
||||||
|
# Print time (inference-only)
|
||||||
|
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
||||||
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
||||||
|
if save_txt or save_img:
|
||||||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||||
|
if update:
|
||||||
|
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_opt():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
|
||||||
|
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
||||||
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
||||||
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
||||||
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
||||||
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
||||||
|
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--view-img', action='store_true', help='show results')
|
||||||
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||||
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||||
|
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
||||||
|
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
||||||
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
||||||
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
||||||
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||||
|
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
||||||
|
parser.add_argument('--update', action='store_true', help='update all models')
|
||||||
|
parser.add_argument('--project', default=ROOT / 'runs/predict-seg', help='save results to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
||||||
|
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
||||||
|
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
||||||
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
||||||
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
||||||
|
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
||||||
|
parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||||
|
print_args(vars(opt))
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
def main(opt):
|
||||||
|
check_requirements(exclude=('tensorboard', 'thop'))
|
||||||
|
run(**vars(opt))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
opt = parse_opt()
|
||||||
|
main(opt)
|
||||||
659
segment/train.py
Normal file
659
segment/train.py
Normal file
@ -0,0 +1,659 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Train a segment model on a segment dataset
|
||||||
|
Models and datasets download automatically from the latest release.
|
||||||
|
|
||||||
|
Usage - Single-GPU training:
|
||||||
|
$ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # from pretrained (recommended)
|
||||||
|
$ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640 # from scratch
|
||||||
|
|
||||||
|
Usage - Multi-GPU DDP training:
|
||||||
|
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
||||||
|
|
||||||
|
Models: https://github.com/ultralytics/yolov5/tree/master/models
|
||||||
|
Datasets: https://github.com/ultralytics/yolov5/tree/master/data
|
||||||
|
Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
from copy import deepcopy
|
||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.nn as nn
|
||||||
|
import yaml
|
||||||
|
from torch.optim import lr_scheduler
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[1] # root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
|
import segment.val as validate # for end-of-epoch mAP
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from models.yolo import SegmentationModel
|
||||||
|
from utils.autoanchor import check_anchors
|
||||||
|
from utils.autobatch import check_train_batch_size
|
||||||
|
from utils.callbacks import Callbacks
|
||||||
|
from utils.downloads import attempt_download, is_url
|
||||||
|
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
|
||||||
|
check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
|
||||||
|
get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
|
||||||
|
labels_to_image_weights, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
|
||||||
|
from utils.loggers import GenericLogger
|
||||||
|
from utils.plots import plot_evolve, plot_labels
|
||||||
|
from utils.segment.dataloaders import create_dataloader
|
||||||
|
from utils.segment.loss import ComputeLoss
|
||||||
|
from utils.segment.metrics import KEYS, fitness
|
||||||
|
from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
|
||||||
|
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
|
||||||
|
smart_resume, torch_distributed_zero_first)
|
||||||
|
|
||||||
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||||
|
RANK = int(os.getenv('RANK', -1))
|
||||||
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
||||||
|
GIT_INFO = check_git_info()
|
||||||
|
|
||||||
|
|
||||||
|
def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
|
||||||
|
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, mask_ratio = \
|
||||||
|
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.mask_ratio
|
||||||
|
# callbacks.run('on_pretrain_routine_start')
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
w = save_dir / 'weights' # weights dir
|
||||||
|
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
last, best = w / 'last.pt', w / 'best.pt'
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
if isinstance(hyp, str):
|
||||||
|
with open(hyp, errors='ignore') as f:
|
||||||
|
hyp = yaml.safe_load(f) # load hyps dict
|
||||||
|
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
||||||
|
opt.hyp = hyp.copy() # for saving hyps to checkpoints
|
||||||
|
|
||||||
|
# Save run settings
|
||||||
|
if not evolve:
|
||||||
|
yaml_save(save_dir / 'hyp.yaml', hyp)
|
||||||
|
yaml_save(save_dir / 'opt.yaml', vars(opt))
|
||||||
|
|
||||||
|
# Loggers
|
||||||
|
data_dict = None
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
logger = GenericLogger(opt=opt, console_logger=LOGGER)
|
||||||
|
|
||||||
|
# Config
|
||||||
|
plots = not evolve and not opt.noplots # create plots
|
||||||
|
overlap = not opt.no_overlap
|
||||||
|
cuda = device.type != 'cpu'
|
||||||
|
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
||||||
|
with torch_distributed_zero_first(LOCAL_RANK):
|
||||||
|
data_dict = data_dict or check_dataset(data) # check if None
|
||||||
|
train_path, val_path = data_dict['train'], data_dict['val']
|
||||||
|
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
||||||
|
names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
||||||
|
is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
|
||||||
|
|
||||||
|
# Model
|
||||||
|
check_suffix(weights, '.pt') # check weights
|
||||||
|
pretrained = weights.endswith('.pt')
|
||||||
|
if pretrained:
|
||||||
|
with torch_distributed_zero_first(LOCAL_RANK):
|
||||||
|
weights = attempt_download(weights) # download if not found locally
|
||||||
|
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
|
||||||
|
model = SegmentationModel(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)
|
||||||
|
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
|
||||||
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
||||||
|
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
|
||||||
|
model.load_state_dict(csd, strict=False) # load
|
||||||
|
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
|
||||||
|
else:
|
||||||
|
model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
||||||
|
amp = check_amp(model) # check AMP
|
||||||
|
|
||||||
|
# Freeze
|
||||||
|
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
|
||||||
|
for k, v in model.named_parameters():
|
||||||
|
v.requires_grad = True # train all layers
|
||||||
|
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
|
||||||
|
if any(x in k for x in freeze):
|
||||||
|
LOGGER.info(f'freezing {k}')
|
||||||
|
v.requires_grad = False
|
||||||
|
|
||||||
|
# Image size
|
||||||
|
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
||||||
|
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
||||||
|
|
||||||
|
# Batch size
|
||||||
|
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
||||||
|
batch_size = check_train_batch_size(model, imgsz, amp)
|
||||||
|
logger.update_params({"batch_size": batch_size})
|
||||||
|
# loggers.on_params_update({"batch_size": batch_size})
|
||||||
|
|
||||||
|
# Optimizer
|
||||||
|
nbs = 64 # nominal batch size
|
||||||
|
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
||||||
|
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
|
||||||
|
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
|
||||||
|
|
||||||
|
# Scheduler
|
||||||
|
if opt.cos_lr:
|
||||||
|
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
||||||
|
else:
|
||||||
|
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
||||||
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
|
||||||
|
|
||||||
|
# EMA
|
||||||
|
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
||||||
|
|
||||||
|
# Resume
|
||||||
|
best_fitness, start_epoch = 0.0, 0
|
||||||
|
if pretrained:
|
||||||
|
if resume:
|
||||||
|
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
|
||||||
|
del ckpt, csd
|
||||||
|
|
||||||
|
# DP mode
|
||||||
|
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
||||||
|
LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
|
||||||
|
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
|
||||||
|
model = torch.nn.DataParallel(model)
|
||||||
|
|
||||||
|
# SyncBatchNorm
|
||||||
|
if opt.sync_bn and cuda and RANK != -1:
|
||||||
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||||
|
LOGGER.info('Using SyncBatchNorm()')
|
||||||
|
|
||||||
|
# Trainloader
|
||||||
|
train_loader, dataset = create_dataloader(
|
||||||
|
train_path,
|
||||||
|
imgsz,
|
||||||
|
batch_size // WORLD_SIZE,
|
||||||
|
gs,
|
||||||
|
single_cls,
|
||||||
|
hyp=hyp,
|
||||||
|
augment=True,
|
||||||
|
cache=None if opt.cache == 'val' else opt.cache,
|
||||||
|
rect=opt.rect,
|
||||||
|
rank=LOCAL_RANK,
|
||||||
|
workers=workers,
|
||||||
|
image_weights=opt.image_weights,
|
||||||
|
quad=opt.quad,
|
||||||
|
prefix=colorstr('train: '),
|
||||||
|
shuffle=True,
|
||||||
|
mask_downsample_ratio=mask_ratio,
|
||||||
|
overlap_mask=overlap,
|
||||||
|
)
|
||||||
|
labels = np.concatenate(dataset.labels, 0)
|
||||||
|
mlc = int(labels[:, 0].max()) # max label class
|
||||||
|
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
|
||||||
|
|
||||||
|
# Process 0
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
val_loader = create_dataloader(val_path,
|
||||||
|
imgsz,
|
||||||
|
batch_size // WORLD_SIZE * 2,
|
||||||
|
gs,
|
||||||
|
single_cls,
|
||||||
|
hyp=hyp,
|
||||||
|
cache=None if noval else opt.cache,
|
||||||
|
rect=True,
|
||||||
|
rank=-1,
|
||||||
|
workers=workers * 2,
|
||||||
|
pad=0.5,
|
||||||
|
mask_downsample_ratio=mask_ratio,
|
||||||
|
overlap_mask=overlap,
|
||||||
|
prefix=colorstr('val: '))[0]
|
||||||
|
|
||||||
|
if not resume:
|
||||||
|
if not opt.noautoanchor:
|
||||||
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
|
||||||
|
model.half().float() # pre-reduce anchor precision
|
||||||
|
|
||||||
|
if plots:
|
||||||
|
plot_labels(labels, names, save_dir)
|
||||||
|
# callbacks.run('on_pretrain_routine_end', labels, names)
|
||||||
|
|
||||||
|
# DDP mode
|
||||||
|
if cuda and RANK != -1:
|
||||||
|
model = smart_DDP(model)
|
||||||
|
|
||||||
|
# Model attributes
|
||||||
|
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
|
||||||
|
hyp['box'] *= 3 / nl # scale to layers
|
||||||
|
hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
|
||||||
|
hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||||
|
hyp['label_smoothing'] = opt.label_smoothing
|
||||||
|
model.nc = nc # attach number of classes to model
|
||||||
|
model.hyp = hyp # attach hyperparameters to model
|
||||||
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||||||
|
model.names = names
|
||||||
|
|
||||||
|
# Start training
|
||||||
|
t0 = time.time()
|
||||||
|
nb = len(train_loader) # number of batches
|
||||||
|
nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
|
||||||
|
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||||
|
last_opt_step = -1
|
||||||
|
maps = np.zeros(nc) # mAP per class
|
||||||
|
results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||||
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||||
|
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
||||||
|
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||||
|
compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
|
||||||
|
# callbacks.run('on_train_start')
|
||||||
|
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
||||||
|
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
||||||
|
f"Logging results to {colorstr('bold', save_dir)}\n"
|
||||||
|
f'Starting training for {epochs} epochs...')
|
||||||
|
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||||
|
# callbacks.run('on_train_epoch_start')
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
# Update image weights (optional, single-GPU only)
|
||||||
|
if opt.image_weights:
|
||||||
|
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
||||||
|
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
||||||
|
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
||||||
|
|
||||||
|
# Update mosaic border (optional)
|
||||||
|
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
||||||
|
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
||||||
|
|
||||||
|
mloss = torch.zeros(4, device=device) # mean losses
|
||||||
|
if RANK != -1:
|
||||||
|
train_loader.sampler.set_epoch(epoch)
|
||||||
|
pbar = enumerate(train_loader)
|
||||||
|
LOGGER.info(('\n' + '%11s' * 8) %
|
||||||
|
('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||||
|
optimizer.zero_grad()
|
||||||
|
for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------
|
||||||
|
# callbacks.run('on_train_batch_start')
|
||||||
|
ni = i + nb * epoch # number integrated batches (since train start)
|
||||||
|
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
||||||
|
|
||||||
|
# Warmup
|
||||||
|
if ni <= nw:
|
||||||
|
xi = [0, nw] # x interp
|
||||||
|
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
||||||
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
||||||
|
for j, x in enumerate(optimizer.param_groups):
|
||||||
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||||
|
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
|
||||||
|
if 'momentum' in x:
|
||||||
|
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
||||||
|
|
||||||
|
# Multi-scale
|
||||||
|
if opt.multi_scale:
|
||||||
|
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
||||||
|
sf = sz / max(imgs.shape[2:]) # scale factor
|
||||||
|
if sf != 1:
|
||||||
|
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
||||||
|
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||||||
|
|
||||||
|
# Forward
|
||||||
|
with torch.cuda.amp.autocast(amp):
|
||||||
|
pred = model(imgs) # forward
|
||||||
|
loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
|
||||||
|
if RANK != -1:
|
||||||
|
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
|
||||||
|
if opt.quad:
|
||||||
|
loss *= 4.
|
||||||
|
|
||||||
|
# Backward
|
||||||
|
scaler.scale(loss).backward()
|
||||||
|
|
||||||
|
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
|
||||||
|
if ni - last_opt_step >= accumulate:
|
||||||
|
scaler.unscale_(optimizer) # unscale gradients
|
||||||
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
||||||
|
scaler.step(optimizer) # optimizer.step
|
||||||
|
scaler.update()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
if ema:
|
||||||
|
ema.update(model)
|
||||||
|
last_opt_step = ni
|
||||||
|
|
||||||
|
# Log
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||||
|
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
||||||
|
pbar.set_description(('%11s' * 2 + '%11.4g' * 6) %
|
||||||
|
(f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
|
||||||
|
# callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
|
||||||
|
# if callbacks.stop_training:
|
||||||
|
# return
|
||||||
|
|
||||||
|
# Mosaic plots
|
||||||
|
if plots:
|
||||||
|
if ni < 3:
|
||||||
|
plot_images_and_masks(imgs, targets, masks, paths, save_dir / f"train_batch{ni}.jpg")
|
||||||
|
if ni == 10:
|
||||||
|
files = sorted(save_dir.glob('train*.jpg'))
|
||||||
|
logger.log_images(files, "Mosaics", epoch)
|
||||||
|
# end batch ------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
# Scheduler
|
||||||
|
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
||||||
|
scheduler.step()
|
||||||
|
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
# mAP
|
||||||
|
# callbacks.run('on_train_epoch_end', epoch=epoch)
|
||||||
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
||||||
|
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
||||||
|
if not noval or final_epoch: # Calculate mAP
|
||||||
|
results, maps, _ = validate.run(data_dict,
|
||||||
|
batch_size=batch_size // WORLD_SIZE * 2,
|
||||||
|
imgsz=imgsz,
|
||||||
|
half=amp,
|
||||||
|
model=ema.ema,
|
||||||
|
single_cls=single_cls,
|
||||||
|
dataloader=val_loader,
|
||||||
|
save_dir=save_dir,
|
||||||
|
plots=False,
|
||||||
|
callbacks=callbacks,
|
||||||
|
compute_loss=compute_loss,
|
||||||
|
mask_downsample_ratio=mask_ratio,
|
||||||
|
overlap=overlap)
|
||||||
|
|
||||||
|
# Update best mAP
|
||||||
|
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||||
|
stop = stopper(epoch=epoch, fitness=fi) # early stop check
|
||||||
|
if fi > best_fitness:
|
||||||
|
best_fitness = fi
|
||||||
|
log_vals = list(mloss) + list(results) + lr
|
||||||
|
# callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
|
||||||
|
# Log val metrics and media
|
||||||
|
metrics_dict = dict(zip(KEYS, log_vals))
|
||||||
|
logger.log_metrics(metrics_dict, epoch)
|
||||||
|
|
||||||
|
# Save model
|
||||||
|
if (not nosave) or (final_epoch and not evolve): # if save
|
||||||
|
ckpt = {
|
||||||
|
'epoch': epoch,
|
||||||
|
'best_fitness': best_fitness,
|
||||||
|
'model': deepcopy(de_parallel(model)).half(),
|
||||||
|
'ema': deepcopy(ema.ema).half(),
|
||||||
|
'updates': ema.updates,
|
||||||
|
'optimizer': optimizer.state_dict(),
|
||||||
|
'opt': vars(opt),
|
||||||
|
'git': GIT_INFO, # {remote, branch, commit} if a git repo
|
||||||
|
'date': datetime.now().isoformat()}
|
||||||
|
|
||||||
|
# Save last, best and delete
|
||||||
|
torch.save(ckpt, last)
|
||||||
|
if best_fitness == fi:
|
||||||
|
torch.save(ckpt, best)
|
||||||
|
if opt.save_period > 0 and epoch % opt.save_period == 0:
|
||||||
|
torch.save(ckpt, w / f'epoch{epoch}.pt')
|
||||||
|
logger.log_model(w / f'epoch{epoch}.pt')
|
||||||
|
del ckpt
|
||||||
|
# callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
|
||||||
|
|
||||||
|
# EarlyStopping
|
||||||
|
if RANK != -1: # if DDP training
|
||||||
|
broadcast_list = [stop if RANK == 0 else None]
|
||||||
|
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
|
||||||
|
if RANK != 0:
|
||||||
|
stop = broadcast_list[0]
|
||||||
|
if stop:
|
||||||
|
break # must break all DDP ranks
|
||||||
|
|
||||||
|
# end epoch ----------------------------------------------------------------------------------------------------
|
||||||
|
# end training -----------------------------------------------------------------------------------------------------
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
||||||
|
for f in last, best:
|
||||||
|
if f.exists():
|
||||||
|
strip_optimizer(f) # strip optimizers
|
||||||
|
if f is best:
|
||||||
|
LOGGER.info(f'\nValidating {f}...')
|
||||||
|
results, _, _ = validate.run(
|
||||||
|
data_dict,
|
||||||
|
batch_size=batch_size // WORLD_SIZE * 2,
|
||||||
|
imgsz=imgsz,
|
||||||
|
model=attempt_load(f, device).half(),
|
||||||
|
iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
|
||||||
|
single_cls=single_cls,
|
||||||
|
dataloader=val_loader,
|
||||||
|
save_dir=save_dir,
|
||||||
|
save_json=is_coco,
|
||||||
|
verbose=True,
|
||||||
|
plots=plots,
|
||||||
|
callbacks=callbacks,
|
||||||
|
compute_loss=compute_loss,
|
||||||
|
mask_downsample_ratio=mask_ratio,
|
||||||
|
overlap=overlap) # val best model with plots
|
||||||
|
if is_coco:
|
||||||
|
# callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
|
||||||
|
metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
|
||||||
|
logger.log_metrics(metrics_dict, epoch)
|
||||||
|
|
||||||
|
# callbacks.run('on_train_end', last, best, epoch, results)
|
||||||
|
# on train end callback using genericLogger
|
||||||
|
logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
|
||||||
|
if not opt.evolve:
|
||||||
|
logger.log_model(best, epoch)
|
||||||
|
if plots:
|
||||||
|
plot_results_with_masks(file=save_dir / 'results.csv') # save results.png
|
||||||
|
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
||||||
|
files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter
|
||||||
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
||||||
|
logger.log_images(files, "Results", epoch + 1)
|
||||||
|
logger.log_images(sorted(save_dir.glob('val*.jpg')), "Validation", epoch + 1)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def parse_opt(known=False):
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s-seg.pt', help='initial weights path')
|
||||||
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
||||||
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
|
||||||
|
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
|
||||||
|
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
||||||
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
||||||
|
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||||||
|
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
||||||
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||||||
|
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
||||||
|
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
|
||||||
|
parser.add_argument('--noplots', action='store_true', help='save no plot files')
|
||||||
|
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
||||||
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||||||
|
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
|
||||||
|
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
||||||
|
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
||||||
|
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
|
||||||
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
||||||
|
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
||||||
|
parser.add_argument('--project', default=ROOT / 'runs/train-seg', help='save to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
||||||
|
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
|
||||||
|
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
||||||
|
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
||||||
|
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
|
||||||
|
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
||||||
|
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
||||||
|
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
||||||
|
|
||||||
|
# Instance Segmentation Args
|
||||||
|
parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
|
||||||
|
parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')
|
||||||
|
|
||||||
|
return parser.parse_known_args()[0] if known else parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main(opt, callbacks=Callbacks()):
|
||||||
|
# Checks
|
||||||
|
if RANK in {-1, 0}:
|
||||||
|
print_args(vars(opt))
|
||||||
|
check_git_status()
|
||||||
|
check_requirements()
|
||||||
|
|
||||||
|
# Resume
|
||||||
|
if opt.resume and not opt.evolve: # resume from specified or most recent last.pt
|
||||||
|
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
|
||||||
|
opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
|
||||||
|
opt_data = opt.data # original dataset
|
||||||
|
if opt_yaml.is_file():
|
||||||
|
with open(opt_yaml, errors='ignore') as f:
|
||||||
|
d = yaml.safe_load(f)
|
||||||
|
else:
|
||||||
|
d = torch.load(last, map_location='cpu')['opt']
|
||||||
|
opt = argparse.Namespace(**d) # replace
|
||||||
|
opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
|
||||||
|
if is_url(opt_data):
|
||||||
|
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
|
||||||
|
else:
|
||||||
|
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
|
||||||
|
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
|
||||||
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
||||||
|
if opt.evolve:
|
||||||
|
if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
|
||||||
|
opt.project = str(ROOT / 'runs/evolve')
|
||||||
|
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
|
||||||
|
if opt.name == 'cfg':
|
||||||
|
opt.name = Path(opt.cfg).stem # use model.yaml as name
|
||||||
|
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
||||||
|
|
||||||
|
# DDP mode
|
||||||
|
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||||
|
if LOCAL_RANK != -1:
|
||||||
|
msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
|
||||||
|
assert not opt.image_weights, f'--image-weights {msg}'
|
||||||
|
assert not opt.evolve, f'--evolve {msg}'
|
||||||
|
assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
|
||||||
|
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
|
||||||
|
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
||||||
|
torch.cuda.set_device(LOCAL_RANK)
|
||||||
|
device = torch.device('cuda', LOCAL_RANK)
|
||||||
|
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
||||||
|
|
||||||
|
# Train
|
||||||
|
if not opt.evolve:
|
||||||
|
train(opt.hyp, opt, device, callbacks)
|
||||||
|
|
||||||
|
# Evolve hyperparameters (optional)
|
||||||
|
else:
|
||||||
|
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
||||||
|
meta = {
|
||||||
|
'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||||
|
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||||
|
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
||||||
|
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
||||||
|
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
||||||
|
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
||||||
|
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
||||||
|
'box': (1, 0.02, 0.2), # box loss gain
|
||||||
|
'cls': (1, 0.2, 4.0), # cls loss gain
|
||||||
|
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
||||||
|
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||||||
|
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
||||||
|
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
||||||
|
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
||||||
|
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
||||||
|
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||||||
|
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||||
|
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||||
|
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||||
|
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
||||||
|
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
||||||
|
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
||||||
|
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
||||||
|
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||||
|
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
||||||
|
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
||||||
|
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
||||||
|
'mixup': (1, 0.0, 1.0), # image mixup (probability)
|
||||||
|
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
|
||||||
|
|
||||||
|
with open(opt.hyp, errors='ignore') as f:
|
||||||
|
hyp = yaml.safe_load(f) # load hyps dict
|
||||||
|
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
||||||
|
hyp['anchors'] = 3
|
||||||
|
if opt.noautoanchor:
|
||||||
|
del hyp['anchors'], meta['anchors']
|
||||||
|
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
||||||
|
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||||||
|
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
|
||||||
|
if opt.bucket:
|
||||||
|
subprocess.run(
|
||||||
|
f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}'.split()) # download evolve.csv if exists
|
||||||
|
|
||||||
|
for _ in range(opt.evolve): # generations to evolve
|
||||||
|
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
||||||
|
# Select parent(s)
|
||||||
|
parent = 'single' # parent selection method: 'single' or 'weighted'
|
||||||
|
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
|
||||||
|
n = min(5, len(x)) # number of previous results to consider
|
||||||
|
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||||||
|
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
|
||||||
|
if parent == 'single' or len(x) == 1:
|
||||||
|
# x = x[random.randint(0, n - 1)] # random selection
|
||||||
|
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||||||
|
elif parent == 'weighted':
|
||||||
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||||||
|
|
||||||
|
# Mutate
|
||||||
|
mp, s = 0.8, 0.2 # mutation probability, sigma
|
||||||
|
npr = np.random
|
||||||
|
npr.seed(int(time.time()))
|
||||||
|
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
|
||||||
|
ng = len(meta)
|
||||||
|
v = np.ones(ng)
|
||||||
|
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||||||
|
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
||||||
|
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
||||||
|
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
||||||
|
|
||||||
|
# Constrain to limits
|
||||||
|
for k, v in meta.items():
|
||||||
|
hyp[k] = max(hyp[k], v[1]) # lower limit
|
||||||
|
hyp[k] = min(hyp[k], v[2]) # upper limit
|
||||||
|
hyp[k] = round(hyp[k], 5) # significant digits
|
||||||
|
|
||||||
|
# Train mutation
|
||||||
|
results = train(hyp.copy(), opt, device, callbacks)
|
||||||
|
callbacks = Callbacks()
|
||||||
|
# Write mutation results
|
||||||
|
print_mutation(KEYS, results, hyp.copy(), save_dir, opt.bucket)
|
||||||
|
|
||||||
|
# Plot results
|
||||||
|
plot_evolve(evolve_csv)
|
||||||
|
LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
|
||||||
|
f"Results saved to {colorstr('bold', save_dir)}\n"
|
||||||
|
f'Usage example: $ python train.py --hyp {evolve_yaml}')
|
||||||
|
|
||||||
|
|
||||||
|
def run(**kwargs):
|
||||||
|
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
|
||||||
|
opt = parse_opt(True)
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
setattr(opt, k, v)
|
||||||
|
main(opt)
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
opt = parse_opt()
|
||||||
|
main(opt)
|
||||||
594
segment/tutorial.ipynb
vendored
Normal file
594
segment/tutorial.ipynb
vendored
Normal file
@ -0,0 +1,594 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "t6MPjfT5NrKQ"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"<div align=\"center\">\n",
|
||||||
|
"\n",
|
||||||
|
" <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
|
||||||
|
" <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"<br>\n",
|
||||||
|
" <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
|
||||||
|
" <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
|
||||||
|
" <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
|
||||||
|
"<br>\n",
|
||||||
|
"\n",
|
||||||
|
"This <a href=\"https://github.com/ultralytics/yolov5\"></a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
|
||||||
|
"\n",
|
||||||
|
"</div>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "7mGmQbAO5pQb"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Setup\n",
|
||||||
|
"\n",
|
||||||
|
"Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/"
|
||||||
|
},
|
||||||
|
"id": "wbvMlHd_QwMG",
|
||||||
|
"outputId": "171b23f0-71b9-4cbf-b666-6fa2ecef70c8"
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stderr",
|
||||||
|
"text": [
|
||||||
|
" 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": [
|
||||||
|
"Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
|
||||||
|
"%cd yolov5\n",
|
||||||
|
"%pip install -qr requirements.txt # install\n",
|
||||||
|
"\n",
|
||||||
|
"import torch\n",
|
||||||
|
"import utils\n",
|
||||||
|
"display = utils.notebook_init() # checks"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "4JnkELT0cIJg"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# 1. Predict\n",
|
||||||
|
"\n",
|
||||||
|
"`segment/predict.py` runs instance segmentation inference on a variety of sources, downloading models automatically from the [latest release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict`. Example inference sources are:\n",
|
||||||
|
"\n",
|
||||||
|
"```shell\n",
|
||||||
|
"python segment/predict.py --source 0 # webcam\n",
|
||||||
|
" img.jpg # image \n",
|
||||||
|
" vid.mp4 # video\n",
|
||||||
|
" screen # screenshot\n",
|
||||||
|
" path/ # directory\n",
|
||||||
|
" 'path/*.jpg' # glob\n",
|
||||||
|
" 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n",
|
||||||
|
" 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
|
||||||
|
"```"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/"
|
||||||
|
},
|
||||||
|
"id": "zR9ZbuQCH7FX",
|
||||||
|
"outputId": "3f67f1c7-f15e-4fa5-d251-967c3b77eaad"
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": [
|
||||||
|
"\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
|
||||||
|
"YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
|
||||||
|
"\n",
|
||||||
|
"Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...\n",
|
||||||
|
"100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]\n",
|
||||||
|
"\n",
|
||||||
|
"Fusing layers... \n",
|
||||||
|
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
|
||||||
|
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms\n",
|
||||||
|
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms\n",
|
||||||
|
"Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)\n",
|
||||||
|
"Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images\n",
|
||||||
|
"#display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "hkAzDWJ7cWTr"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
" \n",
|
||||||
|
"<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/199030123-08c72f8d-6871-4116-8ed3-c373642cf28e.jpg\" width=\"600\">"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "0eq1SMWl6Sfn"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# 2. Validate\n",
|
||||||
|
"Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/"
|
||||||
|
},
|
||||||
|
"id": "WQPtK1QYVaD_",
|
||||||
|
"outputId": "9d751d8c-bee8-4339-cf30-9854ca530449"
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": [
|
||||||
|
"Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip ...\n",
|
||||||
|
"Downloading http://images.cocodataset.org/zips/val2017.zip ...\n",
|
||||||
|
"######################################################################## 100.0%\n",
|
||||||
|
"######################################################################## 100.0%\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# Download COCO val\n",
|
||||||
|
"!bash data/scripts/get_coco.sh --val --segments # download (780M - 5000 images)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/"
|
||||||
|
},
|
||||||
|
"id": "X58w8JLpMnjH",
|
||||||
|
"outputId": "a140d67a-02da-479e-9ddb-7d54bf9e407a"
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": [
|
||||||
|
"\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
|
||||||
|
"YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
|
||||||
|
"\n",
|
||||||
|
"Fusing layers... \n",
|
||||||
|
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
|
||||||
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]\n",
|
||||||
|
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
|
||||||
|
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 157/157 [01:54<00:00, 1.37it/s]\n",
|
||||||
|
" all 5000 36335 0.673 0.517 0.566 0.373 0.672 0.49 0.532 0.319\n",
|
||||||
|
"Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)\n",
|
||||||
|
"Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# Validate YOLOv5s-seg on COCO val\n",
|
||||||
|
"!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "ZY2VXXXu74w5"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# 3. Train\n",
|
||||||
|
"\n",
|
||||||
|
"<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
|
||||||
|
"Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
|
||||||
|
"<br><br>\n",
|
||||||
|
"\n",
|
||||||
|
"Train a YOLOv5s-seg model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128-seg.yaml`, starting from pretrained `--weights yolov5s-seg.pt`, or from randomly initialized `--weights '' --cfg yolov5s-seg.yaml`.\n",
|
||||||
|
"\n",
|
||||||
|
"- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
|
||||||
|
"automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
|
||||||
|
"- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
|
||||||
|
"- **Training Results** are saved to `runs/train-seg/` with incrementing run directories, i.e. `runs/train-seg/exp2`, `runs/train-seg/exp3` etc.\n",
|
||||||
|
"<br><br>\n",
|
||||||
|
"\n",
|
||||||
|
"A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
|
||||||
|
"\n",
|
||||||
|
"## Train on Custom Data with Roboflow 🌟 NEW\n",
|
||||||
|
"\n",
|
||||||
|
"[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
|
||||||
|
"\n",
|
||||||
|
"- Custom Training Example: [https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/](https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/?ref=ultralytics)\n",
|
||||||
|
"- Custom Training Notebook: [](https://colab.research.google.com/drive/1JTz7kpmHsg-5qwVz2d2IH3AaenI1tv0N?usp=sharing)\n",
|
||||||
|
"<br>\n",
|
||||||
|
"\n",
|
||||||
|
"<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://robflow-public-assets.s3.amazonaws.com/how-to-train-yolov5-segmentation-annotation.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "i3oKtE4g-aNn"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
|
||||||
|
"logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML']\n",
|
||||||
|
"\n",
|
||||||
|
"if logger == 'TensorBoard':\n",
|
||||||
|
" %load_ext tensorboard\n",
|
||||||
|
" %tensorboard --logdir runs/train-seg\n",
|
||||||
|
"elif logger == 'Comet':\n",
|
||||||
|
" %pip install -q comet_ml\n",
|
||||||
|
" import comet_ml; comet_ml.init()\n",
|
||||||
|
"elif logger == 'ClearML':\n",
|
||||||
|
" import clearml; clearml.browser_login()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/"
|
||||||
|
},
|
||||||
|
"id": "1NcFxRcFdJ_O",
|
||||||
|
"outputId": "3a3e0cf7-e79c-47a5-c8e7-2d26eeeab988"
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"output_type": "stream",
|
||||||
|
"name": "stdout",
|
||||||
|
"text": [
|
||||||
|
"\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
|
||||||
|
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
|
||||||
|
"YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
|
||||||
|
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
|
||||||
|
"\n",
|
||||||
|
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
|
||||||
|
"Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n",
|
||||||
|
"100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]\n",
|
||||||
|
"Dataset download success ✅ (1.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
" from n params module arguments \n",
|
||||||
|
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
|
||||||
|
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
||||||
|
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
|
||||||
|
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
|
||||||
|
" 4 -1 2 115712 models.common.C3 [128, 128, 2] \n",
|
||||||
|
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
|
||||||
|
" 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
|
||||||
|
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
|
||||||
|
" 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n",
|
||||||
|
" 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n",
|
||||||
|
" 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
|
||||||
|
" 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
||||||
|
" 12 [-1, 6] 1 0 models.common.Concat [1] \n",
|
||||||
|
" 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
|
||||||
|
" 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
|
||||||
|
" 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
||||||
|
" 16 [-1, 4] 1 0 models.common.Concat [1] \n",
|
||||||
|
" 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
|
||||||
|
" 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
|
||||||
|
" 19 [-1, 14] 1 0 models.common.Concat [1] \n",
|
||||||
|
" 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
|
||||||
|
" 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
|
||||||
|
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
||||||
|
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
||||||
|
" 24 [17, 20, 23] 1 615133 models.yolo.Segment [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]\n",
|
||||||
|
"Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs\n",
|
||||||
|
"\n",
|
||||||
|
"Transferred 367/367 items from yolov5s-seg.pt\n",
|
||||||
|
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
|
||||||
|
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
|
||||||
|
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
|
||||||
|
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]\n",
|
||||||
|
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
|
||||||
|
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]\n",
|
||||||
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
|
||||||
|
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 98.90it/s]\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
|
||||||
|
"Plotting labels to runs/train-seg/exp/labels.jpg... \n",
|
||||||
|
"Image sizes 640 train, 640 val\n",
|
||||||
|
"Using 2 dataloader workers\n",
|
||||||
|
"Logging results to \u001b[1mruns/train-seg/exp\u001b[0m\n",
|
||||||
|
"Starting training for 3 epochs...\n",
|
||||||
|
"\n",
|
||||||
|
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
|
||||||
|
" 0/2 4.92G 0.0417 0.04646 0.06066 0.02126 192 640: 100% 8/8 [00:08<00:00, 1.10s/it]\n",
|
||||||
|
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.81it/s]\n",
|
||||||
|
" all 128 929 0.737 0.649 0.715 0.492 0.719 0.617 0.658 0.408\n",
|
||||||
|
"\n",
|
||||||
|
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
|
||||||
|
" 1/2 6.29G 0.04157 0.04503 0.05772 0.01777 208 640: 100% 8/8 [00:09<00:00, 1.21s/it]\n",
|
||||||
|
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.87it/s]\n",
|
||||||
|
" all 128 929 0.756 0.674 0.738 0.506 0.725 0.64 0.68 0.422\n",
|
||||||
|
"\n",
|
||||||
|
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
|
||||||
|
" 2/2 6.29G 0.0425 0.04793 0.06784 0.01863 161 640: 100% 8/8 [00:03<00:00, 2.02it/s]\n",
|
||||||
|
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.88it/s]\n",
|
||||||
|
" all 128 929 0.736 0.694 0.747 0.522 0.769 0.622 0.683 0.427\n",
|
||||||
|
"\n",
|
||||||
|
"3 epochs completed in 0.009 hours.\n",
|
||||||
|
"Optimizer stripped from runs/train-seg/exp/weights/last.pt, 15.6MB\n",
|
||||||
|
"Optimizer stripped from runs/train-seg/exp/weights/best.pt, 15.6MB\n",
|
||||||
|
"\n",
|
||||||
|
"Validating runs/train-seg/exp/weights/best.pt...\n",
|
||||||
|
"Fusing layers... \n",
|
||||||
|
"Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
|
||||||
|
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:06<00:00, 1.59s/it]\n",
|
||||||
|
" all 128 929 0.738 0.694 0.746 0.522 0.759 0.625 0.682 0.426\n",
|
||||||
|
" person 128 254 0.845 0.756 0.836 0.55 0.861 0.669 0.759 0.407\n",
|
||||||
|
" bicycle 128 6 0.475 0.333 0.549 0.341 0.711 0.333 0.526 0.322\n",
|
||||||
|
" car 128 46 0.612 0.565 0.539 0.257 0.555 0.435 0.477 0.171\n",
|
||||||
|
" motorcycle 128 5 0.73 0.8 0.752 0.571 0.747 0.8 0.752 0.42\n",
|
||||||
|
" airplane 128 6 1 0.943 0.995 0.732 0.92 0.833 0.839 0.555\n",
|
||||||
|
" bus 128 7 0.677 0.714 0.722 0.653 0.711 0.714 0.722 0.593\n",
|
||||||
|
" train 128 3 1 0.951 0.995 0.551 1 0.884 0.995 0.781\n",
|
||||||
|
" truck 128 12 0.555 0.417 0.457 0.285 0.624 0.417 0.397 0.277\n",
|
||||||
|
" boat 128 6 0.624 0.5 0.584 0.186 1 0.326 0.412 0.133\n",
|
||||||
|
" traffic light 128 14 0.513 0.302 0.411 0.247 0.435 0.214 0.376 0.251\n",
|
||||||
|
" stop sign 128 2 0.824 1 0.995 0.796 0.906 1 0.995 0.747\n",
|
||||||
|
" bench 128 9 0.75 0.667 0.763 0.367 0.724 0.585 0.698 0.209\n",
|
||||||
|
" bird 128 16 0.961 1 0.995 0.686 0.918 0.938 0.91 0.525\n",
|
||||||
|
" cat 128 4 0.771 0.857 0.945 0.752 0.76 0.8 0.945 0.728\n",
|
||||||
|
" dog 128 9 0.987 0.778 0.963 0.681 1 0.705 0.89 0.574\n",
|
||||||
|
" horse 128 2 0.703 1 0.995 0.697 0.759 1 0.995 0.249\n",
|
||||||
|
" elephant 128 17 0.916 0.882 0.93 0.691 0.811 0.765 0.829 0.537\n",
|
||||||
|
" bear 128 1 0.664 1 0.995 0.995 0.701 1 0.995 0.895\n",
|
||||||
|
" zebra 128 4 0.864 1 0.995 0.921 0.879 1 0.995 0.804\n",
|
||||||
|
" giraffe 128 9 0.883 0.889 0.94 0.683 0.845 0.778 0.78 0.463\n",
|
||||||
|
" backpack 128 6 1 0.59 0.701 0.372 1 0.474 0.52 0.252\n",
|
||||||
|
" umbrella 128 18 0.654 0.839 0.887 0.52 0.517 0.556 0.427 0.229\n",
|
||||||
|
" handbag 128 19 0.54 0.211 0.408 0.221 0.796 0.206 0.396 0.196\n",
|
||||||
|
" tie 128 7 0.864 0.857 0.857 0.577 0.925 0.857 0.857 0.534\n",
|
||||||
|
" suitcase 128 4 0.716 1 0.945 0.647 0.767 1 0.945 0.634\n",
|
||||||
|
" frisbee 128 5 0.708 0.8 0.761 0.643 0.737 0.8 0.761 0.501\n",
|
||||||
|
" skis 128 1 0.691 1 0.995 0.796 0.761 1 0.995 0.199\n",
|
||||||
|
" snowboard 128 7 0.918 0.857 0.904 0.604 0.32 0.286 0.235 0.137\n",
|
||||||
|
" sports ball 128 6 0.902 0.667 0.701 0.466 0.727 0.5 0.497 0.471\n",
|
||||||
|
" kite 128 10 0.586 0.4 0.511 0.231 0.663 0.394 0.417 0.139\n",
|
||||||
|
" baseball bat 128 4 0.359 0.5 0.401 0.169 0.631 0.5 0.526 0.133\n",
|
||||||
|
" baseball glove 128 7 1 0.519 0.58 0.327 0.687 0.286 0.455 0.328\n",
|
||||||
|
" skateboard 128 5 0.729 0.8 0.862 0.631 0.599 0.6 0.604 0.379\n",
|
||||||
|
" tennis racket 128 7 0.57 0.714 0.645 0.448 0.608 0.714 0.645 0.412\n",
|
||||||
|
" bottle 128 18 0.469 0.393 0.537 0.357 0.661 0.389 0.543 0.349\n",
|
||||||
|
" wine glass 128 16 0.677 0.938 0.866 0.441 0.53 0.625 0.67 0.334\n",
|
||||||
|
" cup 128 36 0.777 0.722 0.812 0.466 0.725 0.583 0.762 0.467\n",
|
||||||
|
" fork 128 6 0.948 0.333 0.425 0.27 0.527 0.167 0.18 0.102\n",
|
||||||
|
" knife 128 16 0.757 0.587 0.669 0.458 0.79 0.5 0.552 0.34\n",
|
||||||
|
" spoon 128 22 0.74 0.364 0.559 0.269 0.925 0.364 0.513 0.213\n",
|
||||||
|
" bowl 128 28 0.766 0.714 0.725 0.559 0.803 0.584 0.665 0.353\n",
|
||||||
|
" banana 128 1 0.408 1 0.995 0.398 0.539 1 0.995 0.497\n",
|
||||||
|
" sandwich 128 2 1 0 0.695 0.536 1 0 0.498 0.448\n",
|
||||||
|
" orange 128 4 0.467 1 0.995 0.693 0.518 1 0.995 0.663\n",
|
||||||
|
" broccoli 128 11 0.462 0.455 0.383 0.259 0.548 0.455 0.384 0.256\n",
|
||||||
|
" carrot 128 24 0.631 0.875 0.77 0.533 0.757 0.909 0.853 0.499\n",
|
||||||
|
" hot dog 128 2 0.555 1 0.995 0.995 0.578 1 0.995 0.796\n",
|
||||||
|
" pizza 128 5 0.89 0.8 0.962 0.796 1 0.778 0.962 0.766\n",
|
||||||
|
" donut 128 14 0.695 1 0.893 0.772 0.704 1 0.893 0.696\n",
|
||||||
|
" cake 128 4 0.826 1 0.995 0.92 0.862 1 0.995 0.846\n",
|
||||||
|
" chair 128 35 0.53 0.571 0.613 0.336 0.67 0.6 0.538 0.271\n",
|
||||||
|
" couch 128 6 0.972 0.667 0.833 0.627 1 0.62 0.696 0.394\n",
|
||||||
|
" potted plant 128 14 0.7 0.857 0.883 0.552 0.836 0.857 0.883 0.473\n",
|
||||||
|
" bed 128 3 0.979 0.667 0.83 0.366 1 0 0.83 0.373\n",
|
||||||
|
" dining table 128 13 0.775 0.308 0.505 0.364 0.644 0.231 0.25 0.0804\n",
|
||||||
|
" toilet 128 2 0.836 1 0.995 0.846 0.887 1 0.995 0.797\n",
|
||||||
|
" tv 128 2 0.6 1 0.995 0.846 0.655 1 0.995 0.896\n",
|
||||||
|
" laptop 128 3 0.822 0.333 0.445 0.307 1 0 0.392 0.12\n",
|
||||||
|
" mouse 128 2 1 0 0 0 1 0 0 0\n",
|
||||||
|
" remote 128 8 0.745 0.5 0.62 0.459 0.821 0.5 0.624 0.449\n",
|
||||||
|
" cell phone 128 8 0.686 0.375 0.502 0.272 0.488 0.25 0.28 0.132\n",
|
||||||
|
" microwave 128 3 0.831 1 0.995 0.722 0.867 1 0.995 0.592\n",
|
||||||
|
" oven 128 5 0.439 0.4 0.435 0.294 0.823 0.6 0.645 0.418\n",
|
||||||
|
" sink 128 6 0.677 0.5 0.565 0.448 0.722 0.5 0.46 0.362\n",
|
||||||
|
" refrigerator 128 5 0.533 0.8 0.783 0.524 0.558 0.8 0.783 0.527\n",
|
||||||
|
" book 128 29 0.732 0.379 0.423 0.196 0.69 0.207 0.38 0.131\n",
|
||||||
|
" clock 128 9 0.889 0.778 0.917 0.677 0.908 0.778 0.875 0.604\n",
|
||||||
|
" vase 128 2 0.375 1 0.995 0.995 0.455 1 0.995 0.796\n",
|
||||||
|
" scissors 128 1 1 0 0.0166 0.00166 1 0 0 0\n",
|
||||||
|
" teddy bear 128 21 0.813 0.829 0.841 0.457 0.826 0.678 0.786 0.422\n",
|
||||||
|
" toothbrush 128 5 0.806 1 0.995 0.733 0.991 1 0.995 0.628\n",
|
||||||
|
"Results saved to \u001b[1mruns/train-seg/exp\u001b[0m\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
||||||
|
"!python segment/train.py --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "15glLzbQx5u0"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# 4. Visualize"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "nWOsI5wJR1o3"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Comet Logging and Visualization 🌟 NEW\n",
|
||||||
|
"\n",
|
||||||
|
"[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
|
||||||
|
"\n",
|
||||||
|
"Getting started is easy:\n",
|
||||||
|
"```shell\n",
|
||||||
|
"pip install comet_ml # 1. install\n",
|
||||||
|
"export COMET_API_KEY=<Your API Key> # 2. paste API key\n",
|
||||||
|
"python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n",
|
||||||
|
"```\n",
|
||||||
|
"To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
|
||||||
|
"[](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
|
||||||
|
"\n",
|
||||||
|
"<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
|
||||||
|
"<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "Lay2WsTjNJzP"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## ClearML Logging and Automation 🌟 NEW\n",
|
||||||
|
"\n",
|
||||||
|
"[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
|
||||||
|
"\n",
|
||||||
|
"- `pip install clearml`\n",
|
||||||
|
"- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
|
||||||
|
"\n",
|
||||||
|
"You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
|
||||||
|
"\n",
|
||||||
|
"You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n",
|
||||||
|
"\n",
|
||||||
|
"<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
|
||||||
|
"<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "-WPvRbS5Swl6"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Local Logging\n",
|
||||||
|
"\n",
|
||||||
|
"Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
|
||||||
|
"\n",
|
||||||
|
"This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
|
||||||
|
"\n",
|
||||||
|
"<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "Zelyeqbyt3GD"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Environments\n",
|
||||||
|
"\n",
|
||||||
|
"YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
|
||||||
|
"\n",
|
||||||
|
"- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
|
||||||
|
"- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
|
||||||
|
"- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
|
||||||
|
"- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov3\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker\" alt=\"Docker Pulls\"></a>\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "6Qu7Iesl0p54"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Status\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"If this badge is green, all [YOLOv3 GitHub Actions](https://github.com/ultralytics/yolov3/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "IEijrePND_2I"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Appendix\n",
|
||||||
|
"\n",
|
||||||
|
"Additional content below."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "GMusP4OAxFu6"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
|
||||||
|
"import torch\n",
|
||||||
|
"\n",
|
||||||
|
"model = torch.hub.load('ultralytics/yolov5', 'yolov5s-seg') # yolov5n - yolov5x6 or custom\n",
|
||||||
|
"im = 'https://ultralytics.com/images/zidane.jpg' # file, Path, PIL.Image, OpenCV, nparray, list\n",
|
||||||
|
"results = model(im) # inference\n",
|
||||||
|
"results.print() # or .show(), .save(), .crop(), .pandas(), etc."
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"accelerator": "GPU",
|
||||||
|
"colab": {
|
||||||
|
"name": "YOLOv5 Segmentation Tutorial",
|
||||||
|
"provenance": [],
|
||||||
|
"toc_visible": true
|
||||||
|
},
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.7.12"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 0
|
||||||
|
}
|
||||||
473
segment/val.py
Normal file
473
segment/val.py
Normal file
@ -0,0 +1,473 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Validate a trained segment model on a segment dataset
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ bash data/scripts/get_coco.sh --val --segments # download COCO-segments val split (1G, 5000 images)
|
||||||
|
$ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate COCO-segments
|
||||||
|
|
||||||
|
Usage - formats:
|
||||||
|
$ python segment/val.py --weights yolov5s-seg.pt # PyTorch
|
||||||
|
yolov5s-seg.torchscript # TorchScript
|
||||||
|
yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||||
|
yolov5s-seg_openvino_label # OpenVINO
|
||||||
|
yolov5s-seg.engine # TensorRT
|
||||||
|
yolov5s-seg.mlmodel # CoreML (macOS-only)
|
||||||
|
yolov5s-seg_saved_model # TensorFlow SavedModel
|
||||||
|
yolov5s-seg.pb # TensorFlow GraphDef
|
||||||
|
yolov5s-seg.tflite # TensorFlow Lite
|
||||||
|
yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU
|
||||||
|
yolov5s-seg_paddle_model # PaddlePaddle
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
from multiprocessing.pool import ThreadPool
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[1] # root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from models.common import DetectMultiBackend
|
||||||
|
from models.yolo import SegmentationModel
|
||||||
|
from utils.callbacks import Callbacks
|
||||||
|
from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
|
||||||
|
check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
|
||||||
|
non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
|
||||||
|
from utils.metrics import ConfusionMatrix, box_iou
|
||||||
|
from utils.plots import output_to_target, plot_val_study
|
||||||
|
from utils.segment.dataloaders import create_dataloader
|
||||||
|
from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image
|
||||||
|
from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
|
||||||
|
from utils.segment.plots import plot_images_and_masks
|
||||||
|
from utils.torch_utils import de_parallel, select_device, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
|
def save_one_txt(predn, save_conf, shape, file):
|
||||||
|
# Save one txt result
|
||||||
|
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||||
|
for *xyxy, conf, cls in predn.tolist():
|
||||||
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||||
|
with open(file, 'a') as f:
|
||||||
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||||
|
|
||||||
|
|
||||||
|
def save_one_json(predn, jdict, path, class_map, pred_masks):
|
||||||
|
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
||||||
|
from pycocotools.mask import encode
|
||||||
|
|
||||||
|
def single_encode(x):
|
||||||
|
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
|
||||||
|
rle["counts"] = rle["counts"].decode("utf-8")
|
||||||
|
return rle
|
||||||
|
|
||||||
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
||||||
|
box = xyxy2xywh(predn[:, :4]) # xywh
|
||||||
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||||
|
pred_masks = np.transpose(pred_masks, (2, 0, 1))
|
||||||
|
with ThreadPool(NUM_THREADS) as pool:
|
||||||
|
rles = pool.map(single_encode, pred_masks)
|
||||||
|
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
|
||||||
|
jdict.append({
|
||||||
|
'image_id': image_id,
|
||||||
|
'category_id': class_map[int(p[5])],
|
||||||
|
'bbox': [round(x, 3) for x in b],
|
||||||
|
'score': round(p[4], 5),
|
||||||
|
'segmentation': rles[i]})
|
||||||
|
|
||||||
|
|
||||||
|
def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
||||||
|
"""
|
||||||
|
Return correct prediction matrix
|
||||||
|
Arguments:
|
||||||
|
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
||||||
|
labels (array[M, 5]), class, x1, y1, x2, y2
|
||||||
|
Returns:
|
||||||
|
correct (array[N, 10]), for 10 IoU levels
|
||||||
|
"""
|
||||||
|
if masks:
|
||||||
|
if overlap:
|
||||||
|
nl = len(labels)
|
||||||
|
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
||||||
|
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
||||||
|
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
||||||
|
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
||||||
|
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
||||||
|
gt_masks = gt_masks.gt_(0.5)
|
||||||
|
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
||||||
|
else: # boxes
|
||||||
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||||
|
|
||||||
|
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
||||||
|
correct_class = labels[:, 0:1] == detections[:, 5]
|
||||||
|
for i in range(len(iouv)):
|
||||||
|
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
||||||
|
if x[0].shape[0]:
|
||||||
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
||||||
|
if x[0].shape[0] > 1:
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||||
|
# matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||||
|
correct[matches[:, 1].astype(int), i] = True
|
||||||
|
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
||||||
|
|
||||||
|
|
||||||
|
@smart_inference_mode()
|
||||||
|
def run(
|
||||||
|
data,
|
||||||
|
weights=None, # model.pt path(s)
|
||||||
|
batch_size=32, # batch size
|
||||||
|
imgsz=640, # inference size (pixels)
|
||||||
|
conf_thres=0.001, # confidence threshold
|
||||||
|
iou_thres=0.6, # NMS IoU threshold
|
||||||
|
max_det=300, # maximum detections per image
|
||||||
|
task='val', # train, val, test, speed or study
|
||||||
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
|
workers=8, # max dataloader workers (per RANK in DDP mode)
|
||||||
|
single_cls=False, # treat as single-class dataset
|
||||||
|
augment=False, # augmented inference
|
||||||
|
verbose=False, # verbose output
|
||||||
|
save_txt=False, # save results to *.txt
|
||||||
|
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
||||||
|
save_conf=False, # save confidences in --save-txt labels
|
||||||
|
save_json=False, # save a COCO-JSON results file
|
||||||
|
project=ROOT / 'runs/val-seg', # save to project/name
|
||||||
|
name='exp', # save to project/name
|
||||||
|
exist_ok=False, # existing project/name ok, do not increment
|
||||||
|
half=True, # use FP16 half-precision inference
|
||||||
|
dnn=False, # use OpenCV DNN for ONNX inference
|
||||||
|
model=None,
|
||||||
|
dataloader=None,
|
||||||
|
save_dir=Path(''),
|
||||||
|
plots=True,
|
||||||
|
overlap=False,
|
||||||
|
mask_downsample_ratio=1,
|
||||||
|
compute_loss=None,
|
||||||
|
callbacks=Callbacks(),
|
||||||
|
):
|
||||||
|
if save_json:
|
||||||
|
check_requirements('pycocotools>=2.0.6')
|
||||||
|
process = process_mask_native # more accurate
|
||||||
|
else:
|
||||||
|
process = process_mask # faster
|
||||||
|
|
||||||
|
# Initialize/load model and set device
|
||||||
|
training = model is not None
|
||||||
|
if training: # called by train.py
|
||||||
|
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
||||||
|
half &= device.type != 'cpu' # half precision only supported on CUDA
|
||||||
|
model.half() if half else model.float()
|
||||||
|
nm = de_parallel(model).model[-1].nm # number of masks
|
||||||
|
else: # called directly
|
||||||
|
device = select_device(device, batch_size=batch_size)
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||||
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||||
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||||
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||||
|
half = model.fp16 # FP16 supported on limited backends with CUDA
|
||||||
|
nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks
|
||||||
|
if engine:
|
||||||
|
batch_size = model.batch_size
|
||||||
|
else:
|
||||||
|
device = model.device
|
||||||
|
if not (pt or jit):
|
||||||
|
batch_size = 1 # export.py models default to batch-size 1
|
||||||
|
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
||||||
|
|
||||||
|
# Data
|
||||||
|
data = check_dataset(data) # check
|
||||||
|
|
||||||
|
# Configure
|
||||||
|
model.eval()
|
||||||
|
cuda = device.type != 'cpu'
|
||||||
|
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
|
||||||
|
nc = 1 if single_cls else int(data['nc']) # number of classes
|
||||||
|
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
||||||
|
niou = iouv.numel()
|
||||||
|
|
||||||
|
# Dataloader
|
||||||
|
if not training:
|
||||||
|
if pt and not single_cls: # check --weights are trained on --data
|
||||||
|
ncm = model.model.nc
|
||||||
|
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
|
||||||
|
f'classes). Pass correct combination of --weights and --data that are trained together.'
|
||||||
|
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
||||||
|
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
|
||||||
|
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
||||||
|
dataloader = create_dataloader(data[task],
|
||||||
|
imgsz,
|
||||||
|
batch_size,
|
||||||
|
stride,
|
||||||
|
single_cls,
|
||||||
|
pad=pad,
|
||||||
|
rect=rect,
|
||||||
|
workers=workers,
|
||||||
|
prefix=colorstr(f'{task}: '),
|
||||||
|
overlap_mask=overlap,
|
||||||
|
mask_downsample_ratio=mask_downsample_ratio)[0]
|
||||||
|
|
||||||
|
seen = 0
|
||||||
|
confusion_matrix = ConfusionMatrix(nc=nc)
|
||||||
|
names = model.names if hasattr(model, 'names') else model.module.names # get class names
|
||||||
|
if isinstance(names, (list, tuple)): # old format
|
||||||
|
names = dict(enumerate(names))
|
||||||
|
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
||||||
|
s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P", "R",
|
||||||
|
"mAP50", "mAP50-95)")
|
||||||
|
dt = Profile(), Profile(), Profile()
|
||||||
|
metrics = Metrics()
|
||||||
|
loss = torch.zeros(4, device=device)
|
||||||
|
jdict, stats = [], []
|
||||||
|
# callbacks.run('on_val_start')
|
||||||
|
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||||
|
for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
|
||||||
|
# callbacks.run('on_val_batch_start')
|
||||||
|
with dt[0]:
|
||||||
|
if cuda:
|
||||||
|
im = im.to(device, non_blocking=True)
|
||||||
|
targets = targets.to(device)
|
||||||
|
masks = masks.to(device)
|
||||||
|
masks = masks.float()
|
||||||
|
im = im.half() if half else im.float() # uint8 to fp16/32
|
||||||
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||||
|
nb, _, height, width = im.shape # batch size, channels, height, width
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
with dt[1]:
|
||||||
|
preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None)
|
||||||
|
|
||||||
|
# Loss
|
||||||
|
if compute_loss:
|
||||||
|
loss += compute_loss((train_out, protos), targets, masks)[1] # box, obj, cls
|
||||||
|
|
||||||
|
# NMS
|
||||||
|
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
||||||
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||||||
|
with dt[2]:
|
||||||
|
preds = non_max_suppression(preds,
|
||||||
|
conf_thres,
|
||||||
|
iou_thres,
|
||||||
|
labels=lb,
|
||||||
|
multi_label=True,
|
||||||
|
agnostic=single_cls,
|
||||||
|
max_det=max_det,
|
||||||
|
nm=nm)
|
||||||
|
|
||||||
|
# Metrics
|
||||||
|
plot_masks = [] # masks for plotting
|
||||||
|
for si, (pred, proto) in enumerate(zip(preds, protos)):
|
||||||
|
labels = targets[targets[:, 0] == si, 1:]
|
||||||
|
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
||||||
|
path, shape = Path(paths[si]), shapes[si][0]
|
||||||
|
correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
||||||
|
correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
||||||
|
seen += 1
|
||||||
|
|
||||||
|
if npr == 0:
|
||||||
|
if nl:
|
||||||
|
stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
||||||
|
if plots:
|
||||||
|
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Masks
|
||||||
|
midx = [si] if overlap else targets[:, 0] == si
|
||||||
|
gt_masks = masks[midx]
|
||||||
|
pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
|
||||||
|
|
||||||
|
# Predictions
|
||||||
|
if single_cls:
|
||||||
|
pred[:, 5] = 0
|
||||||
|
predn = pred.clone()
|
||||||
|
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
||||||
|
|
||||||
|
# Evaluate
|
||||||
|
if nl:
|
||||||
|
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
||||||
|
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
||||||
|
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
||||||
|
correct_bboxes = process_batch(predn, labelsn, iouv)
|
||||||
|
correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
|
||||||
|
if plots:
|
||||||
|
confusion_matrix.process_batch(predn, labelsn)
|
||||||
|
stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
|
||||||
|
|
||||||
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
||||||
|
if plots and batch_i < 3:
|
||||||
|
plot_masks.append(pred_masks[:15]) # filter top 15 to plot
|
||||||
|
|
||||||
|
# Save/log
|
||||||
|
if save_txt:
|
||||||
|
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||||
|
if save_json:
|
||||||
|
pred_masks = scale_image(im[si].shape[1:],
|
||||||
|
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
|
||||||
|
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
|
||||||
|
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
||||||
|
|
||||||
|
# Plot images
|
||||||
|
if plots and batch_i < 3:
|
||||||
|
if len(plot_masks):
|
||||||
|
plot_masks = torch.cat(plot_masks, dim=0)
|
||||||
|
plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
|
||||||
|
plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
|
||||||
|
save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
|
||||||
|
|
||||||
|
# callbacks.run('on_val_batch_end')
|
||||||
|
|
||||||
|
# Compute metrics
|
||||||
|
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
||||||
|
if len(stats) and stats[0].any():
|
||||||
|
results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
|
||||||
|
metrics.update(results)
|
||||||
|
nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
|
||||||
|
LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results()))
|
||||||
|
if nt.sum() == 0:
|
||||||
|
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
|
||||||
|
|
||||||
|
# Print results per class
|
||||||
|
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
||||||
|
for i, c in enumerate(metrics.ap_class_index):
|
||||||
|
LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
|
||||||
|
|
||||||
|
# Print speeds
|
||||||
|
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
||||||
|
if not training:
|
||||||
|
shape = (batch_size, 3, imgsz, imgsz)
|
||||||
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
|
||||||
|
|
||||||
|
# Plots
|
||||||
|
if plots:
|
||||||
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
||||||
|
# callbacks.run('on_val_end')
|
||||||
|
|
||||||
|
mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
|
||||||
|
|
||||||
|
# Save JSON
|
||||||
|
if save_json and len(jdict):
|
||||||
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
||||||
|
anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations
|
||||||
|
pred_json = str(save_dir / f"{w}_predictions.json") # predictions
|
||||||
|
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
|
||||||
|
with open(pred_json, 'w') as f:
|
||||||
|
json.dump(jdict, f)
|
||||||
|
|
||||||
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||||
|
from pycocotools.coco import COCO
|
||||||
|
from pycocotools.cocoeval import COCOeval
|
||||||
|
|
||||||
|
anno = COCO(anno_json) # init annotations api
|
||||||
|
pred = anno.loadRes(pred_json) # init predictions api
|
||||||
|
results = []
|
||||||
|
for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
|
||||||
|
if is_coco:
|
||||||
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate
|
||||||
|
eval.evaluate()
|
||||||
|
eval.accumulate()
|
||||||
|
eval.summarize()
|
||||||
|
results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5)
|
||||||
|
map_bbox, map50_bbox, map_mask, map50_mask = results
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.info(f'pycocotools unable to run: {e}')
|
||||||
|
|
||||||
|
# Return results
|
||||||
|
model.float() # for training
|
||||||
|
if not training:
|
||||||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||||
|
final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
|
||||||
|
return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
|
||||||
|
|
||||||
|
|
||||||
|
def parse_opt():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
|
||||||
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
|
||||||
|
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
|
||||||
|
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
|
||||||
|
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
||||||
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
||||||
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||||
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
||||||
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||||
|
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
||||||
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||||
|
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
|
||||||
|
parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
||||||
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.data = check_yaml(opt.data) # check YAML
|
||||||
|
# opt.save_json |= opt.data.endswith('coco.yaml')
|
||||||
|
opt.save_txt |= opt.save_hybrid
|
||||||
|
print_args(vars(opt))
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
def main(opt):
|
||||||
|
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
|
||||||
|
|
||||||
|
if opt.task in ('train', 'val', 'test'): # run normally
|
||||||
|
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
||||||
|
LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
|
||||||
|
if opt.save_hybrid:
|
||||||
|
LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
|
||||||
|
run(**vars(opt))
|
||||||
|
|
||||||
|
else:
|
||||||
|
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
||||||
|
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
|
||||||
|
if opt.task == 'speed': # speed benchmarks
|
||||||
|
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
|
||||||
|
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
||||||
|
for opt.weights in weights:
|
||||||
|
run(**vars(opt), plots=False)
|
||||||
|
|
||||||
|
elif opt.task == 'study': # speed vs mAP benchmarks
|
||||||
|
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
|
||||||
|
for opt.weights in weights:
|
||||||
|
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
|
||||||
|
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
||||||
|
for opt.imgsz in x: # img-size
|
||||||
|
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
|
||||||
|
r, _, t = run(**vars(opt), plots=False)
|
||||||
|
y.append(r + t) # results and times
|
||||||
|
np.savetxt(f, y, fmt='%10.4g') # save
|
||||||
|
subprocess.run('zip -r study.zip study_*.txt'.split())
|
||||||
|
plot_val_study(x=x) # plot
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
opt = parse_opt()
|
||||||
|
main(opt)
|
||||||
45
setup.cfg
45
setup.cfg
@ -1,10 +1,10 @@
|
|||||||
# Project-wide configuration file, can be used for package metadata and other toll configurations
|
# Project-wide configuration file, can be used for package metadata and other toll configurations
|
||||||
# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments
|
# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments
|
||||||
|
# Local usage: pip install pre-commit, pre-commit run --all-files
|
||||||
|
|
||||||
[metadata]
|
[metadata]
|
||||||
license_file = LICENSE
|
license_file = LICENSE
|
||||||
description-file = README.md
|
description_file = README.md
|
||||||
|
|
||||||
|
|
||||||
[tool:pytest]
|
[tool:pytest]
|
||||||
norecursedirs =
|
norecursedirs =
|
||||||
@ -16,7 +16,6 @@ addopts =
|
|||||||
--durations=25
|
--durations=25
|
||||||
--color=yes
|
--color=yes
|
||||||
|
|
||||||
|
|
||||||
[flake8]
|
[flake8]
|
||||||
max-line-length = 120
|
max-line-length = 120
|
||||||
exclude = .tox,*.egg,build,temp
|
exclude = .tox,*.egg,build,temp
|
||||||
@ -26,26 +25,30 @@ verbose = 2
|
|||||||
# https://pep8.readthedocs.io/en/latest/intro.html#error-codes
|
# https://pep8.readthedocs.io/en/latest/intro.html#error-codes
|
||||||
format = pylint
|
format = pylint
|
||||||
# see: https://www.flake8rules.com/
|
# see: https://www.flake8rules.com/
|
||||||
ignore =
|
ignore = E731,F405,E402,F401,W504,E127,E231,E501,F403
|
||||||
E731 # Do not assign a lambda expression, use a def
|
# E731: Do not assign a lambda expression, use a def
|
||||||
F405
|
# F405: name may be undefined, or defined from star imports: module
|
||||||
E402
|
# E402: module level import not at top of file
|
||||||
F841
|
# F401: module imported but unused
|
||||||
E741
|
# W504: line break after binary operator
|
||||||
F821
|
# E127: continuation line over-indented for visual indent
|
||||||
E722
|
# E231: missing whitespace after ‘,’, ‘;’, or ‘:’
|
||||||
F401
|
# E501: line too long
|
||||||
W504
|
# F403: ‘from module import *’ used; unable to detect undefined names
|
||||||
E127
|
|
||||||
W504
|
|
||||||
E231
|
|
||||||
E501
|
|
||||||
F403
|
|
||||||
E302
|
|
||||||
F541
|
|
||||||
|
|
||||||
|
|
||||||
[isort]
|
[isort]
|
||||||
# https://pycqa.github.io/isort/docs/configuration/options.html
|
# https://pycqa.github.io/isort/docs/configuration/options.html
|
||||||
line_length = 120
|
line_length = 120
|
||||||
|
# see: https://pycqa.github.io/isort/docs/configuration/multi_line_output_modes.html
|
||||||
multi_line_output = 0
|
multi_line_output = 0
|
||||||
|
|
||||||
|
[yapf]
|
||||||
|
based_on_style = pep8
|
||||||
|
spaces_before_comment = 2
|
||||||
|
COLUMN_LIMIT = 120
|
||||||
|
COALESCE_BRACKETS = True
|
||||||
|
SPACES_AROUND_POWER_OPERATOR = True
|
||||||
|
SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET = False
|
||||||
|
SPLIT_BEFORE_CLOSING_BRACKET = False
|
||||||
|
SPLIT_BEFORE_FIRST_ARGUMENT = False
|
||||||
|
# EACH_DICT_ENTRY_ON_SEPARATE_LINE = False
|
||||||
|
|||||||
488
train.py
488
train.py
@ -1,14 +1,25 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
"""
|
"""
|
||||||
Train a model on a custom dataset
|
Train a YOLOv3 model on a custom dataset.
|
||||||
|
Models and datasets download automatically from the latest YOLOv3 release.
|
||||||
|
|
||||||
Usage:
|
Usage - Single-GPU training:
|
||||||
$ python path/to/train.py --data coco128.yaml --weights yolov3.pt --img 640
|
$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended)
|
||||||
|
$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
|
||||||
|
|
||||||
|
Usage - Multi-GPU DDP training:
|
||||||
|
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
|
||||||
|
|
||||||
|
Models: https://github.com/ultralytics/yolov5/tree/master/models
|
||||||
|
Datasets: https://github.com/ultralytics/yolov5/tree/master/data
|
||||||
|
Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
|
import subprocess
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
@ -20,49 +31,46 @@ import torch
|
|||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import yaml
|
import yaml
|
||||||
from torch.cuda import amp
|
from torch.optim import lr_scheduler
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
||||||
from torch.optim import SGD, Adam, lr_scheduler
|
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
FILE = Path(__file__).resolve()
|
FILE = Path(__file__).resolve()
|
||||||
ROOT = FILE.parents[0] # root directory
|
ROOT = FILE.parents[0] # YOLOv3 root directory
|
||||||
if str(ROOT) not in sys.path:
|
if str(ROOT) not in sys.path:
|
||||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||||
|
|
||||||
import val # for end-of-epoch mAP
|
import val as validate # for end-of-epoch mAP
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from models.yolo import Model
|
from models.yolo import Model
|
||||||
from utils.autoanchor import check_anchors
|
from utils.autoanchor import check_anchors
|
||||||
from utils.autobatch import check_train_batch_size
|
from utils.autobatch import check_train_batch_size
|
||||||
from utils.callbacks import Callbacks
|
from utils.callbacks import Callbacks
|
||||||
from utils.datasets import create_dataloader
|
from utils.dataloaders import create_dataloader
|
||||||
from utils.downloads import attempt_download
|
from utils.downloads import attempt_download, is_url
|
||||||
from utils.general import (LOGGER, NCOLS, check_dataset, check_file, check_git_status, check_img_size,
|
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
|
||||||
check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
|
check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
|
||||||
init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
|
get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
|
||||||
one_cycle, print_args, print_mutation, strip_optimizer)
|
labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
|
||||||
|
yaml_save)
|
||||||
from utils.loggers import Loggers
|
from utils.loggers import Loggers
|
||||||
from utils.loggers.wandb.wandb_utils import check_wandb_resume
|
from utils.loggers.comet.comet_utils import check_comet_resume
|
||||||
from utils.loss import ComputeLoss
|
from utils.loss import ComputeLoss
|
||||||
from utils.metrics import fitness
|
from utils.metrics import fitness
|
||||||
from utils.plots import plot_evolve, plot_labels
|
from utils.plots import plot_evolve
|
||||||
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
|
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
|
||||||
|
smart_resume, torch_distributed_zero_first)
|
||||||
|
|
||||||
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||||
RANK = int(os.getenv('RANK', -1))
|
RANK = int(os.getenv('RANK', -1))
|
||||||
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
||||||
|
GIT_INFO = check_git_info()
|
||||||
|
|
||||||
|
|
||||||
def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
|
||||||
opt,
|
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
|
||||||
device,
|
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
|
||||||
callbacks
|
callbacks.run('on_pretrain_routine_start')
|
||||||
):
|
|
||||||
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, = \
|
|
||||||
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
|
|
||||||
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
|
|
||||||
|
|
||||||
# Directories
|
# Directories
|
||||||
w = save_dir / 'weights' # weights dir
|
w = save_dir / 'weights' # weights dir
|
||||||
@ -74,36 +82,36 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
with open(hyp, errors='ignore') as f:
|
with open(hyp, errors='ignore') as f:
|
||||||
hyp = yaml.safe_load(f) # load hyps dict
|
hyp = yaml.safe_load(f) # load hyps dict
|
||||||
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
||||||
|
opt.hyp = hyp.copy() # for saving hyps to checkpoints
|
||||||
|
|
||||||
# Save run settings
|
# Save run settings
|
||||||
with open(save_dir / 'hyp.yaml', 'w') as f:
|
if not evolve:
|
||||||
yaml.safe_dump(hyp, f, sort_keys=False)
|
yaml_save(save_dir / 'hyp.yaml', hyp)
|
||||||
with open(save_dir / 'opt.yaml', 'w') as f:
|
yaml_save(save_dir / 'opt.yaml', vars(opt))
|
||||||
yaml.safe_dump(vars(opt), f, sort_keys=False)
|
|
||||||
data_dict = None
|
|
||||||
|
|
||||||
# Loggers
|
# Loggers
|
||||||
if RANK in [-1, 0]:
|
data_dict = None
|
||||||
|
if RANK in {-1, 0}:
|
||||||
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
||||||
if loggers.wandb:
|
|
||||||
data_dict = loggers.wandb.data_dict
|
|
||||||
if resume:
|
|
||||||
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
|
|
||||||
|
|
||||||
# Register actions
|
# Register actions
|
||||||
for k in methods(loggers):
|
for k in methods(loggers):
|
||||||
callbacks.register_action(k, callback=getattr(loggers, k))
|
callbacks.register_action(k, callback=getattr(loggers, k))
|
||||||
|
|
||||||
|
# Process custom dataset artifact link
|
||||||
|
data_dict = loggers.remote_dataset
|
||||||
|
if resume: # If resuming runs from remote artifact
|
||||||
|
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
|
||||||
|
|
||||||
# Config
|
# Config
|
||||||
plots = not evolve # create plots
|
plots = not evolve and not opt.noplots # create plots
|
||||||
cuda = device.type != 'cpu'
|
cuda = device.type != 'cpu'
|
||||||
init_seeds(1 + RANK)
|
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
||||||
with torch_distributed_zero_first(LOCAL_RANK):
|
with torch_distributed_zero_first(LOCAL_RANK):
|
||||||
data_dict = data_dict or check_dataset(data) # check if None
|
data_dict = data_dict or check_dataset(data) # check if None
|
||||||
train_path, val_path = data_dict['train'], data_dict['val']
|
train_path, val_path = data_dict['train'], data_dict['val']
|
||||||
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
||||||
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
||||||
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
|
|
||||||
is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
|
is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
|
||||||
|
|
||||||
# Model
|
# Model
|
||||||
@ -112,7 +120,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
if pretrained:
|
if pretrained:
|
||||||
with torch_distributed_zero_first(LOCAL_RANK):
|
with torch_distributed_zero_first(LOCAL_RANK):
|
||||||
weights = attempt_download(weights) # download if not found locally
|
weights = attempt_download(weights) # download if not found locally
|
||||||
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
|
||||||
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
||||||
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
|
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
|
||||||
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
||||||
@ -121,11 +129,13 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
|
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
|
||||||
else:
|
else:
|
||||||
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
||||||
|
amp = check_amp(model) # check AMP
|
||||||
|
|
||||||
# Freeze
|
# Freeze
|
||||||
freeze = [f'model.{x}.' for x in range(freeze)] # layers to freeze
|
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
|
||||||
for k, v in model.named_parameters():
|
for k, v in model.named_parameters():
|
||||||
v.requires_grad = True # train all layers
|
v.requires_grad = True # train all layers
|
||||||
|
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
|
||||||
if any(x in k for x in freeze):
|
if any(x in k for x in freeze):
|
||||||
LOGGER.info(f'freezing {k}')
|
LOGGER.info(f'freezing {k}')
|
||||||
v.requires_grad = False
|
v.requires_grad = False
|
||||||
@ -136,70 +146,35 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
|
|
||||||
# Batch size
|
# Batch size
|
||||||
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
||||||
batch_size = check_train_batch_size(model, imgsz)
|
batch_size = check_train_batch_size(model, imgsz, amp)
|
||||||
|
loggers.on_params_update({"batch_size": batch_size})
|
||||||
|
|
||||||
# Optimizer
|
# Optimizer
|
||||||
nbs = 64 # nominal batch size
|
nbs = 64 # nominal batch size
|
||||||
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
||||||
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
|
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
|
||||||
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
|
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
|
||||||
|
|
||||||
g0, g1, g2 = [], [], [] # optimizer parameter groups
|
|
||||||
for v in model.modules():
|
|
||||||
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
|
|
||||||
g2.append(v.bias)
|
|
||||||
if isinstance(v, nn.BatchNorm2d): # weight (no decay)
|
|
||||||
g0.append(v.weight)
|
|
||||||
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
|
|
||||||
g1.append(v.weight)
|
|
||||||
|
|
||||||
if opt.adam:
|
|
||||||
optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
|
||||||
else:
|
|
||||||
optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
|
||||||
|
|
||||||
optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
|
|
||||||
optimizer.add_param_group({'params': g2}) # add g2 (biases)
|
|
||||||
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
|
|
||||||
f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
|
|
||||||
del g0, g1, g2
|
|
||||||
|
|
||||||
# Scheduler
|
# Scheduler
|
||||||
if opt.linear_lr:
|
if opt.cos_lr:
|
||||||
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
|
||||||
else:
|
|
||||||
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
||||||
|
else:
|
||||||
|
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
||||||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
|
||||||
|
|
||||||
# EMA
|
# EMA
|
||||||
ema = ModelEMA(model) if RANK in [-1, 0] else None
|
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
||||||
|
|
||||||
# Resume
|
# Resume
|
||||||
start_epoch, best_fitness = 0, 0.0
|
best_fitness, start_epoch = 0.0, 0
|
||||||
if pretrained:
|
if pretrained:
|
||||||
# Optimizer
|
|
||||||
if ckpt['optimizer'] is not None:
|
|
||||||
optimizer.load_state_dict(ckpt['optimizer'])
|
|
||||||
best_fitness = ckpt['best_fitness']
|
|
||||||
|
|
||||||
# EMA
|
|
||||||
if ema and ckpt.get('ema'):
|
|
||||||
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
|
|
||||||
ema.updates = ckpt['updates']
|
|
||||||
|
|
||||||
# Epochs
|
|
||||||
start_epoch = ckpt['epoch'] + 1
|
|
||||||
if resume:
|
if resume:
|
||||||
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
|
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
|
||||||
if epochs < start_epoch:
|
|
||||||
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
|
|
||||||
epochs += ckpt['epoch'] # finetune additional epochs
|
|
||||||
|
|
||||||
del ckpt, csd
|
del ckpt, csd
|
||||||
|
|
||||||
# DP mode
|
# DP mode
|
||||||
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
||||||
LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
|
LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
|
||||||
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
|
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
|
||||||
model = torch.nn.DataParallel(model)
|
model = torch.nn.DataParallel(model)
|
||||||
|
|
||||||
@ -209,41 +184,53 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
LOGGER.info('Using SyncBatchNorm()')
|
LOGGER.info('Using SyncBatchNorm()')
|
||||||
|
|
||||||
# Trainloader
|
# Trainloader
|
||||||
train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
|
train_loader, dataset = create_dataloader(train_path,
|
||||||
hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,
|
imgsz,
|
||||||
workers=workers, image_weights=opt.image_weights, quad=opt.quad,
|
batch_size // WORLD_SIZE,
|
||||||
prefix=colorstr('train: '), shuffle=True)
|
gs,
|
||||||
mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
|
single_cls,
|
||||||
nb = len(train_loader) # number of batches
|
hyp=hyp,
|
||||||
|
augment=True,
|
||||||
|
cache=None if opt.cache == 'val' else opt.cache,
|
||||||
|
rect=opt.rect,
|
||||||
|
rank=LOCAL_RANK,
|
||||||
|
workers=workers,
|
||||||
|
image_weights=opt.image_weights,
|
||||||
|
quad=opt.quad,
|
||||||
|
prefix=colorstr('train: '),
|
||||||
|
shuffle=True,
|
||||||
|
seed=opt.seed)
|
||||||
|
labels = np.concatenate(dataset.labels, 0)
|
||||||
|
mlc = int(labels[:, 0].max()) # max label class
|
||||||
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
|
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
|
||||||
|
|
||||||
# Process 0
|
# Process 0
|
||||||
if RANK in [-1, 0]:
|
if RANK in {-1, 0}:
|
||||||
val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
|
val_loader = create_dataloader(val_path,
|
||||||
hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,
|
imgsz,
|
||||||
workers=workers, pad=0.5,
|
batch_size // WORLD_SIZE * 2,
|
||||||
|
gs,
|
||||||
|
single_cls,
|
||||||
|
hyp=hyp,
|
||||||
|
cache=None if noval else opt.cache,
|
||||||
|
rect=True,
|
||||||
|
rank=-1,
|
||||||
|
workers=workers * 2,
|
||||||
|
pad=0.5,
|
||||||
prefix=colorstr('val: '))[0]
|
prefix=colorstr('val: '))[0]
|
||||||
|
|
||||||
if not resume:
|
if not resume:
|
||||||
labels = np.concatenate(dataset.labels, 0)
|
|
||||||
# c = torch.tensor(labels[:, 0]) # classes
|
|
||||||
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
|
||||||
# model._initialize_biases(cf.to(device))
|
|
||||||
if plots:
|
|
||||||
plot_labels(labels, names, save_dir)
|
|
||||||
|
|
||||||
# Anchors
|
|
||||||
if not opt.noautoanchor:
|
if not opt.noautoanchor:
|
||||||
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
|
||||||
model.half().float() # pre-reduce anchor precision
|
model.half().float() # pre-reduce anchor precision
|
||||||
|
|
||||||
callbacks.run('on_pretrain_routine_end')
|
callbacks.run('on_pretrain_routine_end', labels, names)
|
||||||
|
|
||||||
# DDP mode
|
# DDP mode
|
||||||
if cuda and RANK != -1:
|
if cuda and RANK != -1:
|
||||||
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
model = smart_DDP(model)
|
||||||
|
|
||||||
# Model parameters
|
# Model attributes
|
||||||
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
|
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
|
||||||
hyp['box'] *= 3 / nl # scale to layers
|
hyp['box'] *= 3 / nl # scale to layers
|
||||||
hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
|
hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
|
||||||
@ -256,20 +243,23 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
|
|
||||||
# Start training
|
# Start training
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
|
nb = len(train_loader) # number of batches
|
||||||
|
nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
|
||||||
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||||
last_opt_step = -1
|
last_opt_step = -1
|
||||||
maps = np.zeros(nc) # mAP per class
|
maps = np.zeros(nc) # mAP per class
|
||||||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||||
scaler = amp.GradScaler(enabled=cuda)
|
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
||||||
stopper = EarlyStopping(patience=opt.patience)
|
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||||
compute_loss = ComputeLoss(model) # init loss class
|
compute_loss = ComputeLoss(model) # init loss class
|
||||||
|
callbacks.run('on_train_start')
|
||||||
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
||||||
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
||||||
f"Logging results to {colorstr('bold', save_dir)}\n"
|
f"Logging results to {colorstr('bold', save_dir)}\n"
|
||||||
f'Starting training for {epochs} epochs...')
|
f'Starting training for {epochs} epochs...')
|
||||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||||
|
callbacks.run('on_train_epoch_start')
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
# Update image weights (optional, single-GPU only)
|
# Update image weights (optional, single-GPU only)
|
||||||
@ -286,11 +276,12 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
if RANK != -1:
|
if RANK != -1:
|
||||||
train_loader.sampler.set_epoch(epoch)
|
train_loader.sampler.set_epoch(epoch)
|
||||||
pbar = enumerate(train_loader)
|
pbar = enumerate(train_loader)
|
||||||
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
|
LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
|
||||||
if RANK in [-1, 0]:
|
if RANK in {-1, 0}:
|
||||||
pbar = tqdm(pbar, total=nb, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||||
|
callbacks.run('on_train_batch_start')
|
||||||
ni = i + nb * epoch # number integrated batches (since train start)
|
ni = i + nb * epoch # number integrated batches (since train start)
|
||||||
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
||||||
|
|
||||||
@ -301,7 +292,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
||||||
for j, x in enumerate(optimizer.param_groups):
|
for j, x in enumerate(optimizer.param_groups):
|
||||||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||||
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
|
||||||
if 'momentum' in x:
|
if 'momentum' in x:
|
||||||
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
||||||
|
|
||||||
@ -314,7 +305,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||||||
|
|
||||||
# Forward
|
# Forward
|
||||||
with amp.autocast(enabled=cuda):
|
with torch.cuda.amp.autocast(amp):
|
||||||
pred = model(imgs) # forward
|
pred = model(imgs) # forward
|
||||||
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
||||||
if RANK != -1:
|
if RANK != -1:
|
||||||
@ -325,8 +316,10 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
# Backward
|
# Backward
|
||||||
scaler.scale(loss).backward()
|
scaler.scale(loss).backward()
|
||||||
|
|
||||||
# Optimize
|
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
|
||||||
if ni - last_opt_step >= accumulate:
|
if ni - last_opt_step >= accumulate:
|
||||||
|
scaler.unscale_(optimizer) # unscale gradients
|
||||||
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
||||||
scaler.step(optimizer) # optimizer.step
|
scaler.step(optimizer) # optimizer.step
|
||||||
scaler.update()
|
scaler.update()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
@ -335,37 +328,41 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
last_opt_step = ni
|
last_opt_step = ni
|
||||||
|
|
||||||
# Log
|
# Log
|
||||||
if RANK in [-1, 0]:
|
if RANK in {-1, 0}:
|
||||||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||||
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
||||||
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
|
pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
|
||||||
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
|
(f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
|
||||||
callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
|
callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
|
||||||
|
if callbacks.stop_training:
|
||||||
|
return
|
||||||
# end batch ------------------------------------------------------------------------------------------------
|
# end batch ------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
# Scheduler
|
# Scheduler
|
||||||
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
||||||
scheduler.step()
|
scheduler.step()
|
||||||
|
|
||||||
if RANK in [-1, 0]:
|
if RANK in {-1, 0}:
|
||||||
# mAP
|
# mAP
|
||||||
callbacks.run('on_train_epoch_end', epoch=epoch)
|
callbacks.run('on_train_epoch_end', epoch=epoch)
|
||||||
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
||||||
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
||||||
if not noval or final_epoch: # Calculate mAP
|
if not noval or final_epoch: # Calculate mAP
|
||||||
results, maps, _ = val.run(data_dict,
|
results, maps, _ = validate.run(data_dict,
|
||||||
batch_size=batch_size // WORLD_SIZE * 2,
|
batch_size=batch_size // WORLD_SIZE * 2,
|
||||||
imgsz=imgsz,
|
imgsz=imgsz,
|
||||||
model=ema.ema,
|
half=amp,
|
||||||
single_cls=single_cls,
|
model=ema.ema,
|
||||||
dataloader=val_loader,
|
single_cls=single_cls,
|
||||||
save_dir=save_dir,
|
dataloader=val_loader,
|
||||||
plots=False,
|
save_dir=save_dir,
|
||||||
callbacks=callbacks,
|
plots=False,
|
||||||
compute_loss=compute_loss)
|
callbacks=callbacks,
|
||||||
|
compute_loss=compute_loss)
|
||||||
|
|
||||||
# Update best mAP
|
# Update best mAP
|
||||||
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||||
|
stop = stopper(epoch=epoch, fitness=fi) # early stop check
|
||||||
if fi > best_fitness:
|
if fi > best_fitness:
|
||||||
best_fitness = fi
|
best_fitness = fi
|
||||||
log_vals = list(mloss) + list(results) + lr
|
log_vals = list(mloss) + list(results) + lr
|
||||||
@ -373,65 +370,62 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
|
|
||||||
# Save model
|
# Save model
|
||||||
if (not nosave) or (final_epoch and not evolve): # if save
|
if (not nosave) or (final_epoch and not evolve): # if save
|
||||||
ckpt = {'epoch': epoch,
|
ckpt = {
|
||||||
'best_fitness': best_fitness,
|
'epoch': epoch,
|
||||||
'model': deepcopy(de_parallel(model)).half(),
|
'best_fitness': best_fitness,
|
||||||
'ema': deepcopy(ema.ema).half(),
|
'model': deepcopy(de_parallel(model)).half(),
|
||||||
'updates': ema.updates,
|
'ema': deepcopy(ema.ema).half(),
|
||||||
'optimizer': optimizer.state_dict(),
|
'updates': ema.updates,
|
||||||
'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
|
'optimizer': optimizer.state_dict(),
|
||||||
'date': datetime.now().isoformat()}
|
'opt': vars(opt),
|
||||||
|
'git': GIT_INFO, # {remote, branch, commit} if a git repo
|
||||||
|
'date': datetime.now().isoformat()}
|
||||||
|
|
||||||
# Save last, best and delete
|
# Save last, best and delete
|
||||||
torch.save(ckpt, last)
|
torch.save(ckpt, last)
|
||||||
if best_fitness == fi:
|
if best_fitness == fi:
|
||||||
torch.save(ckpt, best)
|
torch.save(ckpt, best)
|
||||||
if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
|
if opt.save_period > 0 and epoch % opt.save_period == 0:
|
||||||
torch.save(ckpt, w / f'epoch{epoch}.pt')
|
torch.save(ckpt, w / f'epoch{epoch}.pt')
|
||||||
del ckpt
|
del ckpt
|
||||||
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
|
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
|
||||||
|
|
||||||
# Stop Single-GPU
|
# EarlyStopping
|
||||||
if RANK == -1 and stopper(epoch=epoch, fitness=fi):
|
if RANK != -1: # if DDP training
|
||||||
break
|
broadcast_list = [stop if RANK == 0 else None]
|
||||||
|
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
|
||||||
# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
|
if RANK != 0:
|
||||||
# stop = stopper(epoch=epoch, fitness=fi)
|
stop = broadcast_list[0]
|
||||||
# if RANK == 0:
|
if stop:
|
||||||
# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
|
break # must break all DDP ranks
|
||||||
|
|
||||||
# Stop DPP
|
|
||||||
# with torch_distributed_zero_first(RANK):
|
|
||||||
# if stop:
|
|
||||||
# break # must break all DDP ranks
|
|
||||||
|
|
||||||
# end epoch ----------------------------------------------------------------------------------------------------
|
# end epoch ----------------------------------------------------------------------------------------------------
|
||||||
# end training -----------------------------------------------------------------------------------------------------
|
# end training -----------------------------------------------------------------------------------------------------
|
||||||
if RANK in [-1, 0]:
|
if RANK in {-1, 0}:
|
||||||
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
||||||
for f in last, best:
|
for f in last, best:
|
||||||
if f.exists():
|
if f.exists():
|
||||||
strip_optimizer(f) # strip optimizers
|
strip_optimizer(f) # strip optimizers
|
||||||
if f is best:
|
if f is best:
|
||||||
LOGGER.info(f'\nValidating {f}...')
|
LOGGER.info(f'\nValidating {f}...')
|
||||||
results, _, _ = val.run(data_dict,
|
results, _, _ = validate.run(
|
||||||
batch_size=batch_size // WORLD_SIZE * 2,
|
data_dict,
|
||||||
imgsz=imgsz,
|
batch_size=batch_size // WORLD_SIZE * 2,
|
||||||
model=attempt_load(f, device).half(),
|
imgsz=imgsz,
|
||||||
iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65
|
model=attempt_load(f, device).half(),
|
||||||
single_cls=single_cls,
|
iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
|
||||||
dataloader=val_loader,
|
single_cls=single_cls,
|
||||||
save_dir=save_dir,
|
dataloader=val_loader,
|
||||||
save_json=is_coco,
|
save_dir=save_dir,
|
||||||
verbose=True,
|
save_json=is_coco,
|
||||||
plots=True,
|
verbose=True,
|
||||||
callbacks=callbacks,
|
plots=plots,
|
||||||
compute_loss=compute_loss) # val best model with plots
|
callbacks=callbacks,
|
||||||
|
compute_loss=compute_loss) # val best model with plots
|
||||||
if is_coco:
|
if is_coco:
|
||||||
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
|
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
|
||||||
|
|
||||||
callbacks.run('on_train_end', last, best, plots, epoch, results)
|
callbacks.run('on_train_end', last, best, epoch, results)
|
||||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
return results
|
return results
|
||||||
@ -439,80 +433,92 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||||||
|
|
||||||
def parse_opt(known=False):
|
def parse_opt(known=False):
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--weights', type=str, default=ROOT / 'yolov3.pt', help='initial weights path')
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov3-tiny.pt', help='initial weights path')
|
||||||
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
||||||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||||||
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
|
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
|
||||||
parser.add_argument('--epochs', type=int, default=300)
|
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
|
||||||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
||||||
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
||||||
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||||||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
||||||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||||||
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
||||||
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
|
||||||
|
parser.add_argument('--noplots', action='store_true', help='save no plot files')
|
||||||
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
||||||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||||||
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
|
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
|
||||||
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
||||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
||||||
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
||||||
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
|
||||||
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
||||||
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
||||||
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
|
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
|
||||||
parser.add_argument('--name', default='exp', help='save to project/name')
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
||||||
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
|
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
|
||||||
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
||||||
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
||||||
parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
|
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
|
||||||
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
||||||
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
||||||
|
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
||||||
|
|
||||||
# Weights & Biases arguments
|
# Logger arguments
|
||||||
parser.add_argument('--entity', default=None, help='W&B: Entity')
|
parser.add_argument('--entity', default=None, help='Entity')
|
||||||
parser.add_argument('--upload_dataset', action='store_true', help='W&B: Upload dataset as artifact table')
|
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
|
||||||
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
|
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
|
||||||
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
|
parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
|
||||||
|
|
||||||
opt = parser.parse_known_args()[0] if known else parser.parse_args()
|
return parser.parse_known_args()[0] if known else parser.parse_args()
|
||||||
return opt
|
|
||||||
|
|
||||||
|
|
||||||
def main(opt, callbacks=Callbacks()):
|
def main(opt, callbacks=Callbacks()):
|
||||||
# Checks
|
# Checks
|
||||||
if RANK in [-1, 0]:
|
if RANK in {-1, 0}:
|
||||||
print_args(FILE.stem, opt)
|
print_args(vars(opt))
|
||||||
check_git_status()
|
check_git_status()
|
||||||
check_requirements(exclude=['thop'])
|
check_requirements()
|
||||||
|
|
||||||
# Resume
|
# Resume (from specified or most recent last.pt)
|
||||||
if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run
|
if opt.resume and not check_comet_resume(opt) and not opt.evolve:
|
||||||
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
|
||||||
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
|
||||||
with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
|
opt_data = opt.data # original dataset
|
||||||
opt = argparse.Namespace(**yaml.safe_load(f)) # replace
|
if opt_yaml.is_file():
|
||||||
opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
|
with open(opt_yaml, errors='ignore') as f:
|
||||||
LOGGER.info(f'Resuming training from {ckpt}')
|
d = yaml.safe_load(f)
|
||||||
|
else:
|
||||||
|
d = torch.load(last, map_location='cpu')['opt']
|
||||||
|
opt = argparse.Namespace(**d) # replace
|
||||||
|
opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
|
||||||
|
if is_url(opt_data):
|
||||||
|
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
|
||||||
else:
|
else:
|
||||||
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
|
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
|
||||||
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
|
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
|
||||||
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
||||||
if opt.evolve:
|
if opt.evolve:
|
||||||
opt.project = str(ROOT / 'runs/evolve')
|
if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
|
||||||
|
opt.project = str(ROOT / 'runs/evolve')
|
||||||
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
|
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
|
||||||
|
if opt.name == 'cfg':
|
||||||
|
opt.name = Path(opt.cfg).stem # use model.yaml as name
|
||||||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
||||||
|
|
||||||
# DDP mode
|
# DDP mode
|
||||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||||
if LOCAL_RANK != -1:
|
if LOCAL_RANK != -1:
|
||||||
|
msg = 'is not compatible with YOLOv3 Multi-GPU DDP training'
|
||||||
|
assert not opt.image_weights, f'--image-weights {msg}'
|
||||||
|
assert not opt.evolve, f'--evolve {msg}'
|
||||||
|
assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
|
||||||
|
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
|
||||||
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
||||||
assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
|
|
||||||
assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
|
|
||||||
assert not opt.evolve, '--evolve argument is not compatible with DDP training'
|
|
||||||
torch.cuda.set_device(LOCAL_RANK)
|
torch.cuda.set_device(LOCAL_RANK)
|
||||||
device = torch.device('cuda', LOCAL_RANK)
|
device = torch.device('cuda', LOCAL_RANK)
|
||||||
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
||||||
@ -520,52 +526,53 @@ def main(opt, callbacks=Callbacks()):
|
|||||||
# Train
|
# Train
|
||||||
if not opt.evolve:
|
if not opt.evolve:
|
||||||
train(opt.hyp, opt, device, callbacks)
|
train(opt.hyp, opt, device, callbacks)
|
||||||
if WORLD_SIZE > 1 and RANK == 0:
|
|
||||||
LOGGER.info('Destroying process group... ')
|
|
||||||
dist.destroy_process_group()
|
|
||||||
|
|
||||||
# Evolve hyperparameters (optional)
|
# Evolve hyperparameters (optional)
|
||||||
else:
|
else:
|
||||||
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
||||||
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
meta = {
|
||||||
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||||
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||||
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
||||||
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
||||||
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
||||||
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
||||||
'box': (1, 0.02, 0.2), # box loss gain
|
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
||||||
'cls': (1, 0.2, 4.0), # cls loss gain
|
'box': (1, 0.02, 0.2), # box loss gain
|
||||||
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
'cls': (1, 0.2, 4.0), # cls loss gain
|
||||||
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
||||||
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||||||
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
||||||
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
||||||
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
||||||
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
||||||
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||||||
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||||
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||||
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||||
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
||||||
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
||||||
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
||||||
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
||||||
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||||
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
||||||
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
||||||
'mixup': (1, 0.0, 1.0), # image mixup (probability)
|
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
||||||
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
|
'mixup': (1, 0.0, 1.0), # image mixup (probability)
|
||||||
|
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
|
||||||
|
|
||||||
with open(opt.hyp, errors='ignore') as f:
|
with open(opt.hyp, errors='ignore') as f:
|
||||||
hyp = yaml.safe_load(f) # load hyps dict
|
hyp = yaml.safe_load(f) # load hyps dict
|
||||||
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
||||||
hyp['anchors'] = 3
|
hyp['anchors'] = 3
|
||||||
|
if opt.noautoanchor:
|
||||||
|
del hyp['anchors'], meta['anchors']
|
||||||
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
||||||
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||||||
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
|
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
|
||||||
if opt.bucket:
|
if opt.bucket:
|
||||||
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists
|
subprocess.run(
|
||||||
|
f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}'.split()) # download evolve.csv if exists
|
||||||
|
|
||||||
for _ in range(opt.evolve): # generations to evolve
|
for _ in range(opt.evolve): # generations to evolve
|
||||||
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
||||||
@ -601,23 +608,26 @@ def main(opt, callbacks=Callbacks()):
|
|||||||
|
|
||||||
# Train mutation
|
# Train mutation
|
||||||
results = train(hyp.copy(), opt, device, callbacks)
|
results = train(hyp.copy(), opt, device, callbacks)
|
||||||
|
callbacks = Callbacks()
|
||||||
# Write mutation results
|
# Write mutation results
|
||||||
print_mutation(results, hyp.copy(), save_dir, opt.bucket)
|
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
|
||||||
|
'val/obj_loss', 'val/cls_loss')
|
||||||
|
print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
|
||||||
|
|
||||||
# Plot results
|
# Plot results
|
||||||
plot_evolve(evolve_csv)
|
plot_evolve(evolve_csv)
|
||||||
LOGGER.info(f'Hyperparameter evolution finished\n'
|
LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
|
||||||
f"Results saved to {colorstr('bold', save_dir)}\n"
|
f"Results saved to {colorstr('bold', save_dir)}\n"
|
||||||
f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')
|
f'Usage example: $ python train.py --hyp {evolve_yaml}')
|
||||||
|
|
||||||
|
|
||||||
def run(**kwargs):
|
def run(**kwargs):
|
||||||
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov3.pt')
|
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
|
||||||
opt = parse_opt(True)
|
opt = parse_opt(True)
|
||||||
for k, v in kwargs.items():
|
for k, v in kwargs.items():
|
||||||
setattr(opt, k, v)
|
setattr(opt, k, v)
|
||||||
main(opt)
|
main(opt)
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
1261
tutorial.ipynb
vendored
1261
tutorial.ipynb
vendored
File diff suppressed because it is too large
Load Diff
@ -3,16 +3,78 @@
|
|||||||
utils/initialization
|
utils/initialization
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import contextlib
|
||||||
|
import platform
|
||||||
|
import threading
|
||||||
|
|
||||||
def notebook_init():
|
|
||||||
# For notebooks
|
def emojis(str=''):
|
||||||
|
# Return platform-dependent emoji-safe version of string
|
||||||
|
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
||||||
|
|
||||||
|
|
||||||
|
class TryExcept(contextlib.ContextDecorator):
|
||||||
|
# YOLOv3 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
||||||
|
def __init__(self, msg=''):
|
||||||
|
self.msg = msg
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, value, traceback):
|
||||||
|
if value:
|
||||||
|
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def threaded(func):
|
||||||
|
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
||||||
|
thread.start()
|
||||||
|
return thread
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
|
def join_threads(verbose=False):
|
||||||
|
# Join all daemon threads, i.e. atexit.register(lambda: join_threads())
|
||||||
|
main_thread = threading.current_thread()
|
||||||
|
for t in threading.enumerate():
|
||||||
|
if t is not main_thread:
|
||||||
|
if verbose:
|
||||||
|
print(f'Joining thread {t.name}')
|
||||||
|
t.join()
|
||||||
|
|
||||||
|
|
||||||
|
def notebook_init(verbose=True):
|
||||||
|
# Check system software and hardware
|
||||||
print('Checking setup...')
|
print('Checking setup...')
|
||||||
from IPython import display # to display images and clear console output
|
|
||||||
|
|
||||||
from utils.general import emojis
|
import os
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
from utils.general import check_font, check_requirements, is_colab
|
||||||
from utils.torch_utils import select_device # imports
|
from utils.torch_utils import select_device # imports
|
||||||
|
|
||||||
display.clear_output()
|
check_font()
|
||||||
|
|
||||||
|
import psutil
|
||||||
|
from IPython import display # to display images and clear console output
|
||||||
|
|
||||||
|
if is_colab():
|
||||||
|
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
||||||
|
|
||||||
|
# System info
|
||||||
|
if verbose:
|
||||||
|
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||||||
|
ram = psutil.virtual_memory().total
|
||||||
|
total, used, free = shutil.disk_usage("/")
|
||||||
|
display.clear_output()
|
||||||
|
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
||||||
|
else:
|
||||||
|
s = ''
|
||||||
|
|
||||||
select_device(newline=False)
|
select_device(newline=False)
|
||||||
print(emojis('Setup complete ✅'))
|
print(emojis(f'Setup complete ✅ {s}'))
|
||||||
return display
|
return display
|
||||||
|
|||||||
@ -8,29 +8,32 @@ import torch.nn as nn
|
|||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
|
class SiLU(nn.Module):
|
||||||
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
|
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def forward(x):
|
def forward(x):
|
||||||
return x * torch.sigmoid(x)
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
class Hardswish(nn.Module):
|
||||||
|
# Hard-SiLU activation
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def forward(x):
|
def forward(x):
|
||||||
# return x * F.hardsigmoid(x) # for torchscript and CoreML
|
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
||||||
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for torchscript, CoreML and ONNX
|
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
||||||
|
|
||||||
|
|
||||||
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
|
||||||
class Mish(nn.Module):
|
class Mish(nn.Module):
|
||||||
|
# Mish activation https://github.com/digantamisra98/Mish
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def forward(x):
|
def forward(x):
|
||||||
return x * F.softplus(x).tanh()
|
return x * F.softplus(x).tanh()
|
||||||
|
|
||||||
|
|
||||||
class MemoryEfficientMish(nn.Module):
|
class MemoryEfficientMish(nn.Module):
|
||||||
|
# Mish activation memory-efficient
|
||||||
class F(torch.autograd.Function):
|
class F(torch.autograd.Function):
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def forward(ctx, x):
|
def forward(ctx, x):
|
||||||
ctx.save_for_backward(x)
|
ctx.save_for_backward(x)
|
||||||
@ -47,8 +50,8 @@ class MemoryEfficientMish(nn.Module):
|
|||||||
return self.F.apply(x)
|
return self.F.apply(x)
|
||||||
|
|
||||||
|
|
||||||
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
|
||||||
class FReLU(nn.Module):
|
class FReLU(nn.Module):
|
||||||
|
# FReLU activation https://arxiv.org/abs/2007.11824
|
||||||
def __init__(self, c1, k=3): # ch_in, kernel
|
def __init__(self, c1, k=3): # ch_in, kernel
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||||
@ -58,9 +61,8 @@ class FReLU(nn.Module):
|
|||||||
return torch.max(x, self.bn(self.conv(x)))
|
return torch.max(x, self.bn(self.conv(x)))
|
||||||
|
|
||||||
|
|
||||||
# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
|
|
||||||
class AconC(nn.Module):
|
class AconC(nn.Module):
|
||||||
r""" ACON activation (activate or not).
|
r""" ACON activation (activate or not)
|
||||||
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
||||||
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
||||||
"""
|
"""
|
||||||
@ -77,7 +79,7 @@ class AconC(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class MetaAconC(nn.Module):
|
class MetaAconC(nn.Module):
|
||||||
r""" ACON activation (activate or not).
|
r""" ACON activation (activate or not)
|
||||||
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
||||||
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
||||||
"""
|
"""
|
||||||
|
|||||||
@ -8,34 +8,42 @@ import random
|
|||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision.transforms as T
|
||||||
|
import torchvision.transforms.functional as TF
|
||||||
|
|
||||||
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
|
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
|
||||||
from utils.metrics import bbox_ioa
|
from utils.metrics import bbox_ioa
|
||||||
|
|
||||||
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
||||||
|
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
||||||
|
|
||||||
|
|
||||||
class Albumentations:
|
class Albumentations:
|
||||||
# Albumentations class (optional, only used if package is installed)
|
# YOLOv3 Albumentations class (optional, only used if package is installed)
|
||||||
def __init__(self):
|
def __init__(self, size=640):
|
||||||
self.transform = None
|
self.transform = None
|
||||||
|
prefix = colorstr('albumentations: ')
|
||||||
try:
|
try:
|
||||||
import albumentations as A
|
import albumentations as A
|
||||||
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
||||||
|
|
||||||
self.transform = A.Compose([
|
T = [
|
||||||
|
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
|
||||||
A.Blur(p=0.01),
|
A.Blur(p=0.01),
|
||||||
A.MedianBlur(p=0.01),
|
A.MedianBlur(p=0.01),
|
||||||
A.ToGray(p=0.01),
|
A.ToGray(p=0.01),
|
||||||
A.CLAHE(p=0.01),
|
A.CLAHE(p=0.01),
|
||||||
A.RandomBrightnessContrast(p=0.0),
|
A.RandomBrightnessContrast(p=0.0),
|
||||||
A.RandomGamma(p=0.0),
|
A.RandomGamma(p=0.0),
|
||||||
A.ImageCompression(quality_lower=75, p=0.0)],
|
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
||||||
bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
||||||
|
|
||||||
LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
||||||
except ImportError: # package not installed, skip
|
except ImportError: # package not installed, skip
|
||||||
pass
|
pass
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
LOGGER.info(colorstr('albumentations: ') + f'{e}')
|
LOGGER.info(f'{prefix}{e}')
|
||||||
|
|
||||||
def __call__(self, im, labels, p=1.0):
|
def __call__(self, im, labels, p=1.0):
|
||||||
if self.transform and random.random() < p:
|
if self.transform and random.random() < p:
|
||||||
@ -44,6 +52,18 @@ class Albumentations:
|
|||||||
return im, labels
|
return im, labels
|
||||||
|
|
||||||
|
|
||||||
|
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
||||||
|
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
|
||||||
|
return TF.normalize(x, mean, std, inplace=inplace)
|
||||||
|
|
||||||
|
|
||||||
|
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
||||||
|
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
|
||||||
|
for i in range(3):
|
||||||
|
x[:, i] = x[:, i] * std[i] + mean[i]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
||||||
# HSV color-space augmentation
|
# HSV color-space augmentation
|
||||||
if hgain or sgain or vgain:
|
if hgain or sgain or vgain:
|
||||||
@ -121,7 +141,14 @@ def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleF
|
|||||||
return im, ratio, (dw, dh)
|
return im, ratio, (dw, dh)
|
||||||
|
|
||||||
|
|
||||||
def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
|
def random_perspective(im,
|
||||||
|
targets=(),
|
||||||
|
segments=(),
|
||||||
|
degrees=10,
|
||||||
|
translate=.1,
|
||||||
|
scale=.1,
|
||||||
|
shear=10,
|
||||||
|
perspective=0.0,
|
||||||
border=(0, 0)):
|
border=(0, 0)):
|
||||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
||||||
# targets = [cls, xyxy]
|
# targets = [cls, xyxy]
|
||||||
@ -174,7 +201,7 @@ def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, sc
|
|||||||
# Transform label coordinates
|
# Transform label coordinates
|
||||||
n = len(targets)
|
n = len(targets)
|
||||||
if n:
|
if n:
|
||||||
use_segments = any(x.any() for x in segments)
|
use_segments = any(x.any() for x in segments) and len(segments) == n
|
||||||
new = np.zeros((n, 4))
|
new = np.zeros((n, 4))
|
||||||
if use_segments: # warp segments
|
if use_segments: # warp segments
|
||||||
segments = resample_segments(segments) # upsample
|
segments = resample_segments(segments) # upsample
|
||||||
@ -223,12 +250,10 @@ def copy_paste(im, labels, segments, p=0.5):
|
|||||||
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
||||||
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
||||||
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
||||||
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
|
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
||||||
|
|
||||||
result = cv2.bitwise_and(src1=im, src2=im_new)
|
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
||||||
result = cv2.flip(result, 1) # augment segments (flip left-right)
|
i = cv2.flip(im_new, 1).astype(bool)
|
||||||
i = result > 0 # pixels to replace
|
|
||||||
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
|
|
||||||
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
||||||
|
|
||||||
return im, labels, segments
|
return im, labels, segments
|
||||||
@ -255,7 +280,7 @@ def cutout(im, labels, p=0.5):
|
|||||||
# return unobscured labels
|
# return unobscured labels
|
||||||
if len(labels) and s > 0.03:
|
if len(labels) and s > 0.03:
|
||||||
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||||||
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h)) # intersection over area
|
||||||
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||||||
|
|
||||||
return labels
|
return labels
|
||||||
@ -269,9 +294,104 @@ def mixup(im, labels, im2, labels2):
|
|||||||
return im, labels
|
return im, labels
|
||||||
|
|
||||||
|
|
||||||
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
||||||
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
||||||
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||||||
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||||||
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
||||||
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
||||||
|
|
||||||
|
|
||||||
|
def classify_albumentations(
|
||||||
|
augment=True,
|
||||||
|
size=224,
|
||||||
|
scale=(0.08, 1.0),
|
||||||
|
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
|
||||||
|
hflip=0.5,
|
||||||
|
vflip=0.0,
|
||||||
|
jitter=0.4,
|
||||||
|
mean=IMAGENET_MEAN,
|
||||||
|
std=IMAGENET_STD,
|
||||||
|
auto_aug=False):
|
||||||
|
# YOLOv3 classification Albumentations (optional, only used if package is installed)
|
||||||
|
prefix = colorstr('albumentations: ')
|
||||||
|
try:
|
||||||
|
import albumentations as A
|
||||||
|
from albumentations.pytorch import ToTensorV2
|
||||||
|
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
||||||
|
if augment: # Resize and crop
|
||||||
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
|
||||||
|
if auto_aug:
|
||||||
|
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
||||||
|
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
|
||||||
|
else:
|
||||||
|
if hflip > 0:
|
||||||
|
T += [A.HorizontalFlip(p=hflip)]
|
||||||
|
if vflip > 0:
|
||||||
|
T += [A.VerticalFlip(p=vflip)]
|
||||||
|
if jitter > 0:
|
||||||
|
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue
|
||||||
|
T += [A.ColorJitter(*color_jitter, 0)]
|
||||||
|
else: # Use fixed crop for eval set (reproducibility)
|
||||||
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
||||||
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
||||||
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
||||||
|
return A.Compose(T)
|
||||||
|
|
||||||
|
except ImportError: # package not installed, skip
|
||||||
|
LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)')
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.info(f'{prefix}{e}')
|
||||||
|
|
||||||
|
|
||||||
|
def classify_transforms(size=224):
|
||||||
|
# Transforms to apply if albumentations not installed
|
||||||
|
assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
|
||||||
|
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||||||
|
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||||||
|
|
||||||
|
|
||||||
|
class LetterBox:
|
||||||
|
# YOLOv3 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
||||||
|
def __init__(self, size=(640, 640), auto=False, stride=32):
|
||||||
|
super().__init__()
|
||||||
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||||||
|
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
||||||
|
self.stride = stride # used with auto
|
||||||
|
|
||||||
|
def __call__(self, im): # im = np.array HWC
|
||||||
|
imh, imw = im.shape[:2]
|
||||||
|
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
||||||
|
h, w = round(imh * r), round(imw * r) # resized image
|
||||||
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
||||||
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
||||||
|
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
||||||
|
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
||||||
|
return im_out
|
||||||
|
|
||||||
|
|
||||||
|
class CenterCrop:
|
||||||
|
# YOLOv3 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
|
||||||
|
def __init__(self, size=640):
|
||||||
|
super().__init__()
|
||||||
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||||||
|
|
||||||
|
def __call__(self, im): # im = np.array HWC
|
||||||
|
imh, imw = im.shape[:2]
|
||||||
|
m = min(imh, imw) # min dimension
|
||||||
|
top, left = (imh - m) // 2, (imw - m) // 2
|
||||||
|
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
||||||
|
|
||||||
|
|
||||||
|
class ToTensor:
|
||||||
|
# YOLOv3 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
||||||
|
def __init__(self, half=False):
|
||||||
|
super().__init__()
|
||||||
|
self.half = half
|
||||||
|
|
||||||
|
def __call__(self, im): # im = np.array HWC in BGR order
|
||||||
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
||||||
|
im = torch.from_numpy(im) # to torch
|
||||||
|
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
||||||
|
im /= 255.0 # 0-255 to 0.0-1.0
|
||||||
|
return im
|
||||||
|
|||||||
@ -1,6 +1,6 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
"""
|
"""
|
||||||
Auto-anchor utils
|
AutoAnchor utils
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import random
|
import random
|
||||||
@ -10,21 +10,23 @@ import torch
|
|||||||
import yaml
|
import yaml
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from utils.general import LOGGER, colorstr, emojis
|
from utils import TryExcept
|
||||||
|
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
|
||||||
|
|
||||||
PREFIX = colorstr('AutoAnchor: ')
|
PREFIX = colorstr('AutoAnchor: ')
|
||||||
|
|
||||||
|
|
||||||
def check_anchor_order(m):
|
def check_anchor_order(m):
|
||||||
# Check anchor order against stride order for Detect() module m, and correct if necessary
|
# Check anchor order against stride order for YOLOv3 Detect() module m, and correct if necessary
|
||||||
a = m.anchors.prod(-1).view(-1) # anchor area
|
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
||||||
da = a[-1] - a[0] # delta a
|
da = a[-1] - a[0] # delta a
|
||||||
ds = m.stride[-1] - m.stride[0] # delta s
|
ds = m.stride[-1] - m.stride[0] # delta s
|
||||||
if da.sign() != ds.sign(): # same order
|
if da and (da.sign() != ds.sign()): # same order
|
||||||
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
||||||
m.anchors[:] = m.anchors.flip(0)
|
m.anchors[:] = m.anchors.flip(0)
|
||||||
|
|
||||||
|
|
||||||
|
@TryExcept(f'{PREFIX}ERROR')
|
||||||
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||||
# Check anchor fit to data, recompute if necessary
|
# Check anchor fit to data, recompute if necessary
|
||||||
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||||
@ -40,26 +42,26 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
|||||||
bpr = (best > 1 / thr).float().mean() # best possible recall
|
bpr = (best > 1 / thr).float().mean() # best possible recall
|
||||||
return bpr, aat
|
return bpr, aat
|
||||||
|
|
||||||
anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1) # current anchors
|
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
||||||
|
anchors = m.anchors.clone() * stride # current anchors
|
||||||
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
||||||
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
||||||
if bpr > 0.98: # threshold to recompute
|
if bpr > 0.98: # threshold to recompute
|
||||||
LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
|
LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
|
||||||
else:
|
else:
|
||||||
LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
|
LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
|
||||||
na = m.anchors.numel() // 2 # number of anchors
|
na = m.anchors.numel() // 2 # number of anchors
|
||||||
try:
|
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||||
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
|
||||||
except Exception as e:
|
|
||||||
LOGGER.info(f'{PREFIX}ERROR: {e}')
|
|
||||||
new_bpr = metric(anchors)[0]
|
new_bpr = metric(anchors)[0]
|
||||||
if new_bpr > bpr: # replace anchors
|
if new_bpr > bpr: # replace anchors
|
||||||
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
||||||
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
||||||
check_anchor_order(m)
|
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
||||||
LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
m.anchors /= stride
|
||||||
|
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
||||||
else:
|
else:
|
||||||
LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.')
|
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
||||||
|
LOGGER.info(s)
|
||||||
|
|
||||||
|
|
||||||
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||||
@ -81,6 +83,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|||||||
"""
|
"""
|
||||||
from scipy.cluster.vq import kmeans
|
from scipy.cluster.vq import kmeans
|
||||||
|
|
||||||
|
npr = np.random
|
||||||
thr = 1 / thr
|
thr = 1 / thr
|
||||||
|
|
||||||
def metric(k, wh): # compute metrics
|
def metric(k, wh): # compute metrics
|
||||||
@ -100,7 +103,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|||||||
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
||||||
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
||||||
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
||||||
for i, x in enumerate(k):
|
for x in k:
|
||||||
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
||||||
if verbose:
|
if verbose:
|
||||||
LOGGER.info(s[:-2])
|
LOGGER.info(s[:-2])
|
||||||
@ -109,7 +112,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|||||||
if isinstance(dataset, str): # *.yaml file
|
if isinstance(dataset, str): # *.yaml file
|
||||||
with open(dataset, errors='ignore') as f:
|
with open(dataset, errors='ignore') as f:
|
||||||
data_dict = yaml.safe_load(f) # model dict
|
data_dict = yaml.safe_load(f) # model dict
|
||||||
from utils.datasets import LoadImagesAndLabels
|
from utils.dataloaders import LoadImagesAndLabels
|
||||||
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||||
|
|
||||||
# Get label wh
|
# Get label wh
|
||||||
@ -119,18 +122,21 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|||||||
# Filter
|
# Filter
|
||||||
i = (wh0 < 3.0).any(1).sum()
|
i = (wh0 < 3.0).any(1).sum()
|
||||||
if i:
|
if i:
|
||||||
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
|
LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
|
||||||
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
|
||||||
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||||||
|
|
||||||
# Kmeans calculation
|
# Kmeans init
|
||||||
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
try:
|
||||||
s = wh.std(0) # sigmas for whitening
|
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
||||||
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
assert n <= len(wh) # apply overdetermined constraint
|
||||||
assert len(k) == n, f'{PREFIX}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}'
|
s = wh.std(0) # sigmas for whitening
|
||||||
k *= s
|
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
||||||
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
||||||
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
except Exception:
|
||||||
|
LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
|
||||||
|
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
||||||
|
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
||||||
k = print_results(k, verbose=False)
|
k = print_results(k, verbose=False)
|
||||||
|
|
||||||
# Plot
|
# Plot
|
||||||
@ -146,9 +152,8 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|||||||
# fig.savefig('wh.png', dpi=200)
|
# fig.savefig('wh.png', dpi=200)
|
||||||
|
|
||||||
# Evolve
|
# Evolve
|
||||||
npr = np.random
|
|
||||||
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||||
pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:') # progress bar
|
pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||||
for _ in pbar:
|
for _ in pbar:
|
||||||
v = np.ones(sh)
|
v = np.ones(sh)
|
||||||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||||
@ -161,4 +166,4 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|||||||
if verbose:
|
if verbose:
|
||||||
print_results(k, verbose)
|
print_results(k, verbose)
|
||||||
|
|
||||||
return print_results(k)
|
return print_results(k).astype(np.float32)
|
||||||
|
|||||||
@ -7,51 +7,66 @@ from copy import deepcopy
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from torch.cuda import amp
|
|
||||||
|
|
||||||
from utils.general import LOGGER, colorstr
|
from utils.general import LOGGER, colorstr
|
||||||
from utils.torch_utils import profile
|
from utils.torch_utils import profile
|
||||||
|
|
||||||
|
|
||||||
def check_train_batch_size(model, imgsz=640):
|
def check_train_batch_size(model, imgsz=640, amp=True):
|
||||||
# Check training batch size
|
# Check YOLOv3 training batch size
|
||||||
with amp.autocast():
|
with torch.cuda.amp.autocast(amp):
|
||||||
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||||||
|
|
||||||
|
|
||||||
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
|
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
|
||||||
# Automatically estimate best batch size to use `fraction` of available CUDA memory
|
# Automatically estimate best YOLOv3 batch size to use `fraction` of available CUDA memory
|
||||||
# Usage:
|
# Usage:
|
||||||
# import torch
|
# import torch
|
||||||
# from utils.autobatch import autobatch
|
# from utils.autobatch import autobatch
|
||||||
# model = torch.hub.load('ultralytics/yolov3', 'yolov3', autoshape=False)
|
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
||||||
# print(autobatch(model))
|
# print(autobatch(model))
|
||||||
|
|
||||||
|
# Check device
|
||||||
prefix = colorstr('AutoBatch: ')
|
prefix = colorstr('AutoBatch: ')
|
||||||
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
||||||
device = next(model.parameters()).device # get model device
|
device = next(model.parameters()).device # get model device
|
||||||
if device.type == 'cpu':
|
if device.type == 'cpu':
|
||||||
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
||||||
return batch_size
|
return batch_size
|
||||||
|
if torch.backends.cudnn.benchmark:
|
||||||
|
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
|
||||||
|
return batch_size
|
||||||
|
|
||||||
|
# Inspect CUDA memory
|
||||||
|
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||||||
d = str(device).upper() # 'CUDA:0'
|
d = str(device).upper() # 'CUDA:0'
|
||||||
properties = torch.cuda.get_device_properties(device) # device properties
|
properties = torch.cuda.get_device_properties(device) # device properties
|
||||||
t = properties.total_memory / 1024 ** 3 # (GiB)
|
t = properties.total_memory / gb # GiB total
|
||||||
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GiB)
|
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
||||||
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GiB)
|
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
||||||
f = t - (r + a) # free inside reserved
|
f = t - (r + a) # GiB free
|
||||||
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
||||||
|
|
||||||
|
# Profile batch sizes
|
||||||
batch_sizes = [1, 2, 4, 8, 16]
|
batch_sizes = [1, 2, 4, 8, 16]
|
||||||
try:
|
try:
|
||||||
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
|
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
||||||
y = profile(img, model, n=3, device=device)
|
results = profile(img, model, n=3, device=device)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
LOGGER.warning(f'{prefix}{e}')
|
LOGGER.warning(f'{prefix}{e}')
|
||||||
|
|
||||||
y = [x[2] for x in y if x] # memory [2]
|
# Fit a solution
|
||||||
batch_sizes = batch_sizes[:len(y)]
|
y = [x[2] for x in results if x] # memory [2]
|
||||||
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
|
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
||||||
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
||||||
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
|
if None in results: # some sizes failed
|
||||||
|
i = results.index(None) # first fail index
|
||||||
|
if b >= batch_sizes[i]: # y intercept above failure point
|
||||||
|
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
||||||
|
if b < 1 or b > 1024: # b outside of safe range
|
||||||
|
b = batch_size
|
||||||
|
LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
|
||||||
|
|
||||||
|
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
|
||||||
|
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
|
||||||
return b
|
return b
|
||||||
|
|||||||
0
utils/aws/__init__.py
Normal file
0
utils/aws/__init__.py
Normal file
26
utils/aws/mime.sh
Normal file
26
utils/aws/mime.sh
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
|
||||||
|
# This script will run on every instance restart, not only on first start
|
||||||
|
# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
|
||||||
|
|
||||||
|
Content-Type: multipart/mixed; boundary="//"
|
||||||
|
MIME-Version: 1.0
|
||||||
|
|
||||||
|
--//
|
||||||
|
Content-Type: text/cloud-config; charset="us-ascii"
|
||||||
|
MIME-Version: 1.0
|
||||||
|
Content-Transfer-Encoding: 7bit
|
||||||
|
Content-Disposition: attachment; filename="cloud-config.txt"
|
||||||
|
|
||||||
|
#cloud-config
|
||||||
|
cloud_final_modules:
|
||||||
|
- [scripts-user, always]
|
||||||
|
|
||||||
|
--//
|
||||||
|
Content-Type: text/x-shellscript; charset="us-ascii"
|
||||||
|
MIME-Version: 1.0
|
||||||
|
Content-Transfer-Encoding: 7bit
|
||||||
|
Content-Disposition: attachment; filename="userdata.txt"
|
||||||
|
|
||||||
|
#!/bin/bash
|
||||||
|
# --- paste contents of userdata.sh here ---
|
||||||
|
--//
|
||||||
40
utils/aws/resume.py
Normal file
40
utils/aws/resume.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
# Resume all interrupted trainings in yolov5/ dir including DDP trainings
|
||||||
|
# Usage: $ python utils/aws/resume.py
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
FILE = Path(__file__).resolve()
|
||||||
|
ROOT = FILE.parents[2] # YOLOv5 root directory
|
||||||
|
if str(ROOT) not in sys.path:
|
||||||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||||
|
|
||||||
|
port = 0 # --master_port
|
||||||
|
path = Path('').resolve()
|
||||||
|
for last in path.rglob('*/**/last.pt'):
|
||||||
|
ckpt = torch.load(last)
|
||||||
|
if ckpt['optimizer'] is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Load opt.yaml
|
||||||
|
with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
|
||||||
|
opt = yaml.safe_load(f)
|
||||||
|
|
||||||
|
# Get device count
|
||||||
|
d = opt['device'].split(',') # devices
|
||||||
|
nd = len(d) # number of devices
|
||||||
|
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
|
||||||
|
|
||||||
|
if ddp: # multi-GPU
|
||||||
|
port += 1
|
||||||
|
cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
|
||||||
|
else: # single-GPU
|
||||||
|
cmd = f'python train.py --resume {last}'
|
||||||
|
|
||||||
|
cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
|
||||||
|
print(cmd)
|
||||||
|
os.system(cmd)
|
||||||
27
utils/aws/userdata.sh
Normal file
27
utils/aws/userdata.sh
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
|
||||||
|
# This script will run only once on first instance start (for a re-start script see mime.sh)
|
||||||
|
# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
|
||||||
|
# Use >300 GB SSD
|
||||||
|
|
||||||
|
cd home/ubuntu
|
||||||
|
if [ ! -d yolov5 ]; then
|
||||||
|
echo "Running first-time script." # install dependencies, download COCO, pull Docker
|
||||||
|
git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
|
||||||
|
cd yolov5
|
||||||
|
bash data/scripts/get_coco.sh && echo "COCO done." &
|
||||||
|
sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
|
||||||
|
python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
|
||||||
|
wait && echo "All tasks done." # finish background tasks
|
||||||
|
else
|
||||||
|
echo "Running re-start script." # resume interrupted runs
|
||||||
|
i=0
|
||||||
|
list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
|
||||||
|
while IFS= read -r id; do
|
||||||
|
((i++))
|
||||||
|
echo "restarting container $i: $id"
|
||||||
|
sudo docker start $id
|
||||||
|
# sudo docker exec -it $id python train.py --resume # single-GPU
|
||||||
|
sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
|
||||||
|
done <<<"$list"
|
||||||
|
fi
|
||||||
@ -3,46 +3,46 @@
|
|||||||
Callback utils
|
Callback utils
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import threading
|
||||||
|
|
||||||
|
|
||||||
class Callbacks:
|
class Callbacks:
|
||||||
""""
|
""""
|
||||||
Handles all registered callbacks for Hooks
|
Handles all registered callbacks for YOLOv3 Hooks
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Define the available callbacks
|
def __init__(self):
|
||||||
_callbacks = {
|
# Define the available callbacks
|
||||||
'on_pretrain_routine_start': [],
|
self._callbacks = {
|
||||||
'on_pretrain_routine_end': [],
|
'on_pretrain_routine_start': [],
|
||||||
|
'on_pretrain_routine_end': [],
|
||||||
'on_train_start': [],
|
'on_train_start': [],
|
||||||
'on_train_epoch_start': [],
|
'on_train_epoch_start': [],
|
||||||
'on_train_batch_start': [],
|
'on_train_batch_start': [],
|
||||||
'optimizer_step': [],
|
'optimizer_step': [],
|
||||||
'on_before_zero_grad': [],
|
'on_before_zero_grad': [],
|
||||||
'on_train_batch_end': [],
|
'on_train_batch_end': [],
|
||||||
'on_train_epoch_end': [],
|
'on_train_epoch_end': [],
|
||||||
|
'on_val_start': [],
|
||||||
'on_val_start': [],
|
'on_val_batch_start': [],
|
||||||
'on_val_batch_start': [],
|
'on_val_image_end': [],
|
||||||
'on_val_image_end': [],
|
'on_val_batch_end': [],
|
||||||
'on_val_batch_end': [],
|
'on_val_end': [],
|
||||||
'on_val_end': [],
|
'on_fit_epoch_end': [], # fit = train + val
|
||||||
|
'on_model_save': [],
|
||||||
'on_fit_epoch_end': [], # fit = train + val
|
'on_train_end': [],
|
||||||
'on_model_save': [],
|
'on_params_update': [],
|
||||||
'on_train_end': [],
|
'teardown': [],}
|
||||||
|
self.stop_training = False # set True to interrupt training
|
||||||
'teardown': [],
|
|
||||||
}
|
|
||||||
|
|
||||||
def register_action(self, hook, name='', callback=None):
|
def register_action(self, hook, name='', callback=None):
|
||||||
"""
|
"""
|
||||||
Register a new action to a callback hook
|
Register a new action to a callback hook
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
hook The callback hook name to register the action to
|
hook: The callback hook name to register the action to
|
||||||
name The name of the action for later reference
|
name: The name of the action for later reference
|
||||||
callback The callback to fire
|
callback: The callback to fire
|
||||||
"""
|
"""
|
||||||
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||||
assert callable(callback), f"callback '{callback}' is not callable"
|
assert callable(callback), f"callback '{callback}' is not callable"
|
||||||
@ -53,24 +53,24 @@ class Callbacks:
|
|||||||
Returns all the registered actions by callback hook
|
Returns all the registered actions by callback hook
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
hook The name of the hook to check, defaults to all
|
hook: The name of the hook to check, defaults to all
|
||||||
"""
|
"""
|
||||||
if hook:
|
return self._callbacks[hook] if hook else self._callbacks
|
||||||
return self._callbacks[hook]
|
|
||||||
else:
|
|
||||||
return self._callbacks
|
|
||||||
|
|
||||||
def run(self, hook, *args, **kwargs):
|
def run(self, hook, *args, thread=False, **kwargs):
|
||||||
"""
|
"""
|
||||||
Loop through the registered actions and fire all callbacks
|
Loop through the registered actions and fire all callbacks on main thread
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
hook The name of the hook to check, defaults to all
|
hook: The name of the hook to check, defaults to all
|
||||||
args Arguments to receive from
|
args: Arguments to receive from YOLOv3
|
||||||
kwargs Keyword Arguments to receive from
|
thread: (boolean) Run callbacks in daemon thread
|
||||||
|
kwargs: Keyword Arguments to receive from YOLOv3
|
||||||
"""
|
"""
|
||||||
|
|
||||||
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||||
|
|
||||||
for logger in self._callbacks[hook]:
|
for logger in self._callbacks[hook]:
|
||||||
logger['callback'](*args, **kwargs)
|
if thread:
|
||||||
|
threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start()
|
||||||
|
else:
|
||||||
|
logger['callback'](*args, **kwargs)
|
||||||
|
|||||||
1221
utils/dataloaders.py
Normal file
1221
utils/dataloaders.py
Normal file
File diff suppressed because it is too large
Load Diff
1036
utils/datasets.py
1036
utils/datasets.py
File diff suppressed because it is too large
Load Diff
@ -1,6 +1,6 @@
|
|||||||
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
# Builds ultralytics/yolov3:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov3
|
# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov3
|
||||||
# Image is CUDA-optimized for YOLOv3 single/multi-GPU training and inference
|
# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
|
||||||
|
|
||||||
# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
||||||
# FROM docker.io/pytorch/pytorch:latest
|
# FROM docker.io/pytorch/pytorch:latest
|
||||||
@ -26,7 +26,7 @@ WORKDIR /usr/src/app
|
|||||||
|
|
||||||
# Copy contents
|
# Copy contents
|
||||||
# COPY . /usr/src/app (issues as not a .git directory)
|
# COPY . /usr/src/app (issues as not a .git directory)
|
||||||
RUN git clone https://github.com/ultralytics/yolov3 /usr/src/app
|
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
|
||||||
|
|
||||||
# Install pip packages
|
# Install pip packages
|
||||||
COPY requirements.txt .
|
COPY requirements.txt .
|
||||||
@ -45,22 +45,22 @@ ENV DEBIAN_FRONTEND teletype
|
|||||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
# Build and Push
|
# Build and Push
|
||||||
# t=ultralytics/yolov3:latest && sudo docker build -f Dockerfile -t $t . && sudo docker push $t
|
# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
|
||||||
|
|
||||||
# Pull and Run
|
# Pull and Run
|
||||||
# t=ultralytics/yolov3:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
||||||
|
|
||||||
# Pull and Run with local directory access
|
# Pull and Run with local directory access
|
||||||
# t=ultralytics/yolov3:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
|
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
|
||||||
|
|
||||||
# Kill all
|
# Kill all
|
||||||
# sudo docker kill $(sudo docker ps -q)
|
# sudo docker kill $(sudo docker ps -q)
|
||||||
|
|
||||||
# Kill all image-based
|
# Kill all image-based
|
||||||
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov3:latest)
|
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
|
||||||
|
|
||||||
# DockerHub tag update
|
# DockerHub tag update
|
||||||
# t=ultralytics/yolov3:latest tnew=ultralytics/yolov3:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
|
# t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
|
||||||
|
|
||||||
# Clean up
|
# Clean up
|
||||||
# sudo docker system prune -a --volumes
|
# sudo docker system prune -a --volumes
|
||||||
@ -72,4 +72,4 @@ ENV DEBIAN_FRONTEND teletype
|
|||||||
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|
||||||
|
|
||||||
# GCP VM from Image
|
# GCP VM from Image
|
||||||
# docker.io/ultralytics/yolov3:latest
|
# docker.io/ultralytics/yolov5:latest
|
||||||
41
utils/docker/Dockerfile-arm64
Normal file
41
utils/docker/Dockerfile-arm64
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov3
|
||||||
|
# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
|
||||||
|
|
||||||
|
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
|
||||||
|
FROM arm64v8/ubuntu:rolling
|
||||||
|
|
||||||
|
# Downloads to user config dir
|
||||||
|
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||||
|
|
||||||
|
# Install linux packages
|
||||||
|
ENV DEBIAN_FRONTEND noninteractive
|
||||||
|
RUN apt update
|
||||||
|
RUN TZ=Etc/UTC apt install -y tzdata
|
||||||
|
RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc libgl1-mesa-glx libglib2.0-0 libpython3-dev
|
||||||
|
# RUN alias python=python3
|
||||||
|
|
||||||
|
# Install pip packages
|
||||||
|
COPY requirements.txt .
|
||||||
|
RUN python3 -m pip install --upgrade pip wheel
|
||||||
|
RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
|
||||||
|
coremltools onnx onnxruntime
|
||||||
|
# tensorflow-aarch64 tensorflowjs \
|
||||||
|
|
||||||
|
# Create working directory
|
||||||
|
RUN mkdir -p /usr/src/app
|
||||||
|
WORKDIR /usr/src/app
|
||||||
|
|
||||||
|
# Copy contents
|
||||||
|
# COPY . /usr/src/app (issues as not a .git directory)
|
||||||
|
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
|
||||||
|
ENV DEBIAN_FRONTEND teletype
|
||||||
|
|
||||||
|
|
||||||
|
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
# Build and Push
|
||||||
|
# t=ultralytics/yolov5:latest-arm64 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t
|
||||||
|
|
||||||
|
# Pull and Run
|
||||||
|
# t=ultralytics/yolov5:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
|
||||||
42
utils/docker/Dockerfile-cpu
Normal file
42
utils/docker/Dockerfile-cpu
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# YOLOv3 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov3
|
||||||
|
# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
|
||||||
|
|
||||||
|
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
|
||||||
|
FROM ubuntu:rolling
|
||||||
|
|
||||||
|
# Downloads to user config dir
|
||||||
|
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||||
|
|
||||||
|
# Install linux packages
|
||||||
|
ENV DEBIAN_FRONTEND noninteractive
|
||||||
|
RUN apt update
|
||||||
|
RUN TZ=Etc/UTC apt install -y tzdata
|
||||||
|
RUN apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg
|
||||||
|
# RUN alias python=python3
|
||||||
|
|
||||||
|
# Install pip packages
|
||||||
|
COPY requirements.txt .
|
||||||
|
RUN python3 -m pip install --upgrade pip wheel
|
||||||
|
RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
|
||||||
|
coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2022.3' \
|
||||||
|
# tensorflow tensorflowjs \
|
||||||
|
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
|
|
||||||
|
# Create working directory
|
||||||
|
RUN mkdir -p /usr/src/app
|
||||||
|
WORKDIR /usr/src/app
|
||||||
|
|
||||||
|
# Copy contents
|
||||||
|
# COPY . /usr/src/app (issues as not a .git directory)
|
||||||
|
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
|
||||||
|
ENV DEBIAN_FRONTEND teletype
|
||||||
|
|
||||||
|
|
||||||
|
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
# Build and Push
|
||||||
|
# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t
|
||||||
|
|
||||||
|
# Pull and Run
|
||||||
|
# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
|
||||||
@ -3,147 +3,106 @@
|
|||||||
Download utils
|
Download utils
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import os
|
import logging
|
||||||
import platform
|
|
||||||
import subprocess
|
import subprocess
|
||||||
import time
|
|
||||||
import urllib
|
import urllib
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from zipfile import ZipFile
|
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def is_url(url, check=True):
|
||||||
|
# Check if string is URL and check if URL exists
|
||||||
|
try:
|
||||||
|
url = str(url)
|
||||||
|
result = urllib.parse.urlparse(url)
|
||||||
|
assert all([result.scheme, result.netloc]) # check if is url
|
||||||
|
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
|
||||||
|
except (AssertionError, urllib.request.HTTPError):
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
def gsutil_getsize(url=''):
|
def gsutil_getsize(url=''):
|
||||||
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
||||||
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
||||||
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
||||||
|
|
||||||
|
|
||||||
|
def url_getsize(url='https://ultralytics.com/images/bus.jpg'):
|
||||||
|
# Return downloadable file size in bytes
|
||||||
|
response = requests.head(url, allow_redirects=True)
|
||||||
|
return int(response.headers.get('content-length', -1))
|
||||||
|
|
||||||
|
|
||||||
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
||||||
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
||||||
|
from utils.general import LOGGER
|
||||||
|
|
||||||
file = Path(file)
|
file = Path(file)
|
||||||
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
||||||
try: # url1
|
try: # url1
|
||||||
print(f'Downloading {url} to {file}...')
|
LOGGER.info(f'Downloading {url} to {file}...')
|
||||||
torch.hub.download_url_to_file(url, str(file))
|
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
||||||
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
||||||
except Exception as e: # url2
|
except Exception as e: # url2
|
||||||
file.unlink(missing_ok=True) # remove partial downloads
|
if file.exists():
|
||||||
print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
file.unlink() # remove partial downloads
|
||||||
os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
||||||
|
subprocess.run(
|
||||||
|
f"curl -# -L '{url2 or url}' -o '{file}' --retry 3 -C -".split()) # curl download, retry and resume on fail
|
||||||
finally:
|
finally:
|
||||||
if not file.exists() or file.stat().st_size < min_bytes: # check
|
if not file.exists() or file.stat().st_size < min_bytes: # check
|
||||||
file.unlink(missing_ok=True) # remove partial downloads
|
if file.exists():
|
||||||
print(f"ERROR: {assert_msg}\n{error_msg}")
|
file.unlink() # remove partial downloads
|
||||||
print('')
|
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
||||||
|
LOGGER.info('')
|
||||||
|
|
||||||
|
|
||||||
def attempt_download(file, repo='ultralytics/yolov3'): # from utils.downloads import *; attempt_download()
|
def attempt_download(file, repo='ultralytics/yolov5', release='v7.0'):
|
||||||
# Attempt file download if does not exist
|
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v7.0', etc.
|
||||||
|
from utils.general import LOGGER
|
||||||
|
|
||||||
|
def github_assets(repository, version='latest'):
|
||||||
|
# Return GitHub repo tag (i.e. 'v7.0') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
|
||||||
|
if version != 'latest':
|
||||||
|
version = f'tags/{version}' # i.e. tags/v7.0
|
||||||
|
response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
|
||||||
|
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
||||||
|
|
||||||
file = Path(str(file).strip().replace("'", ''))
|
file = Path(str(file).strip().replace("'", ''))
|
||||||
|
|
||||||
if not file.exists():
|
if not file.exists():
|
||||||
# URL specified
|
# URL specified
|
||||||
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
||||||
if str(file).startswith(('http:/', 'https:/')): # download
|
if str(file).startswith(('http:/', 'https:/')): # download
|
||||||
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
||||||
name = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
||||||
safe_download(file=name, url=url, min_bytes=1E5)
|
if Path(file).is_file():
|
||||||
return name
|
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
||||||
|
else:
|
||||||
|
safe_download(file=file, url=url, min_bytes=1E5)
|
||||||
|
return file
|
||||||
|
|
||||||
# GitHub assets
|
# GitHub assets
|
||||||
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] # default
|
||||||
try:
|
try:
|
||||||
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
|
tag, assets = github_assets(repo, release)
|
||||||
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov3.pt'...]
|
except Exception:
|
||||||
tag = response['tag_name'] # i.e. 'v1.0'
|
|
||||||
except: # fallback plan
|
|
||||||
assets = ['yolov3.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt']
|
|
||||||
try:
|
try:
|
||||||
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
tag, assets = github_assets(repo) # latest release
|
||||||
except:
|
except Exception:
|
||||||
tag = 'v9.5.0' # current release
|
try:
|
||||||
|
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
||||||
|
except Exception:
|
||||||
|
tag = release
|
||||||
|
|
||||||
|
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
||||||
if name in assets:
|
if name in assets:
|
||||||
safe_download(file,
|
url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
|
||||||
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
safe_download(
|
||||||
# url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}', # backup url (optional)
|
file,
|
||||||
min_bytes=1E5,
|
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
||||||
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/')
|
min_bytes=1E5,
|
||||||
|
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
||||||
|
|
||||||
return str(file)
|
return str(file)
|
||||||
|
|
||||||
|
|
||||||
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
|
|
||||||
# Downloads a file from Google Drive. from yolov3.utils.downloads import *; gdrive_download()
|
|
||||||
t = time.time()
|
|
||||||
file = Path(file)
|
|
||||||
cookie = Path('cookie') # gdrive cookie
|
|
||||||
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
|
|
||||||
file.unlink(missing_ok=True) # remove existing file
|
|
||||||
cookie.unlink(missing_ok=True) # remove existing cookie
|
|
||||||
|
|
||||||
# Attempt file download
|
|
||||||
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
|
||||||
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
|
|
||||||
if os.path.exists('cookie'): # large file
|
|
||||||
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
|
|
||||||
else: # small file
|
|
||||||
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
|
|
||||||
r = os.system(s) # execute, capture return
|
|
||||||
cookie.unlink(missing_ok=True) # remove existing cookie
|
|
||||||
|
|
||||||
# Error check
|
|
||||||
if r != 0:
|
|
||||||
file.unlink(missing_ok=True) # remove partial
|
|
||||||
print('Download error ') # raise Exception('Download error')
|
|
||||||
return r
|
|
||||||
|
|
||||||
# Unzip if archive
|
|
||||||
if file.suffix == '.zip':
|
|
||||||
print('unzipping... ', end='')
|
|
||||||
ZipFile(file).extractall(path=file.parent) # unzip
|
|
||||||
file.unlink() # remove zip
|
|
||||||
|
|
||||||
print(f'Done ({time.time() - t:.1f}s)')
|
|
||||||
return r
|
|
||||||
|
|
||||||
|
|
||||||
def get_token(cookie="./cookie"):
|
|
||||||
with open(cookie) as f:
|
|
||||||
for line in f:
|
|
||||||
if "download" in line:
|
|
||||||
return line.split()[-1]
|
|
||||||
return ""
|
|
||||||
|
|
||||||
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
|
||||||
# # Uploads a file to a bucket
|
|
||||||
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
|
||||||
#
|
|
||||||
# storage_client = storage.Client()
|
|
||||||
# bucket = storage_client.get_bucket(bucket_name)
|
|
||||||
# blob = bucket.blob(destination_blob_name)
|
|
||||||
#
|
|
||||||
# blob.upload_from_filename(source_file_name)
|
|
||||||
#
|
|
||||||
# print('File {} uploaded to {}.'.format(
|
|
||||||
# source_file_name,
|
|
||||||
# destination_blob_name))
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
|
||||||
# # Uploads a blob from a bucket
|
|
||||||
# storage_client = storage.Client()
|
|
||||||
# bucket = storage_client.get_bucket(bucket_name)
|
|
||||||
# blob = bucket.blob(source_blob_name)
|
|
||||||
#
|
|
||||||
# blob.download_to_filename(destination_file_name)
|
|
||||||
#
|
|
||||||
# print('Blob {} downloaded to {}.'.format(
|
|
||||||
# source_blob_name,
|
|
||||||
# destination_file_name))
|
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user