diff --git a/README.md b/README.md
index f00bccde..c527cd00 100755
--- a/README.md
+++ b/README.md
@@ -153,28 +153,28 @@ YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |608 |16.6
33.1
37.0
**44.0** |35.4
58.2
60.7
**62.6**
```bash
-$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 608 --augment
+$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 640 --augment
Namespace(augment=True, batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='coco2014.data', device='', img_size=608, iou_thres=0.7, save_json=True, single_cls=False, task='test', weights='weights/yolov3-spp-ultralytics.pt')
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
Class Images Targets P R mAP@0.5 F1: 100%|█████████| 313/313 [03:00<00:00, 1.74it/s]
- all 5e+03 3.51e+04 0.357 0.727 0.622 0.474
+ all 5e+03 3.51e+04 0.35 0.737 0.624 0.47
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.454
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.631
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.498
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.265
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.498
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.605
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.357
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.619
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.827
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.770
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.859
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.896
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.457
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.635
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.502
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.282
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.589
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.359
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.621
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.828
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.772
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.861
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.893
-Speed: 20.2/2.4/22.6 ms inference/NMS/total per 608x608 image at batch-size 16
+Speed: 21.6/2.6/24.1 ms inference/NMS/total per 640x640 image at batch-size 16
```
# Reproduce Our Results