Compare commits
No commits in common. "987530bbfe697284fadda7f7483de866f4b93fb1" and "0b0b8347444bd2a22f04aa0e3ddc7a446592aa92" have entirely different histories.
987530bbfe
...
0b0b834744
@ -1,46 +0,0 @@
|
|||||||
|
|
||||||
|
|
||||||
cmake_minimum_required(VERSION 3.5)
|
|
||||||
project(yolov4_msg)
|
|
||||||
|
|
||||||
# Find dependencies
|
|
||||||
#find_package(ament_cmake REQUIRED)
|
|
||||||
find_package(rclpy REQUIRED)
|
|
||||||
find_package(std_msgs REQUIRED)
|
|
||||||
|
|
||||||
# Create the executable
|
|
||||||
#add_executable(yolov4_msg yolov4_msg.py)
|
|
||||||
|
|
||||||
# Set the permissions of the Python script to be executable
|
|
||||||
|
|
||||||
find_package(rosidl_default_generators REQUIRED)
|
|
||||||
|
|
||||||
rosidl_generate_interfaces(yolov4_msg
|
|
||||||
"msg/BoundingBox.msg"
|
|
||||||
"msg/BoundingBoxes.msg"
|
|
||||||
DEPENDENCIES builtin_interfaces std_msgs
|
|
||||||
)
|
|
||||||
|
|
||||||
# Link the executable with the necessary libraries
|
|
||||||
#ament_target_dependencies(yolov4_msg rclpy)
|
|
||||||
|
|
||||||
# Install the executable
|
|
||||||
#install(TARGETS yolov4_msg DESTINATION lib/yolov4_msg)
|
|
||||||
|
|
||||||
# Install the script, setup.py, and package.xml files
|
|
||||||
#install(PROGRAMS yolov4_msg.py
|
|
||||||
# DESTINATION lib/yolov3_on_bag)
|
|
||||||
#install(FILES package.xml
|
|
||||||
# DESTINATION share/yolov3_on_bag)
|
|
||||||
|
|
||||||
# Export the package dependencies
|
|
||||||
#ament_export_dependencies(rclpy)
|
|
||||||
|
|
||||||
# Package information
|
|
||||||
#ament_package()
|
|
||||||
|
|
||||||
#add_executable(yolov4_msg yolov4_msg.py)
|
|
||||||
|
|
||||||
ament_export_dependencies(rosidl_default_runtime)
|
|
||||||
|
|
||||||
ament_package()
|
|
||||||
@ -1,210 +0,0 @@
|
|||||||
|
|
||||||
# Subscribe to input image topic.
|
|
||||||
# object_detector ([std_msgs::Int8])
|
|
||||||
|
|
||||||
# Publishes the number of detected objects.
|
|
||||||
|
|
||||||
# bounding_boxes ([darknet_ros_msgs::BoundingBoxes])
|
|
||||||
|
|
||||||
# Publishes an array of bounding boxes that gives information of the position and size of the bounding box in pixel coordinates.
|
|
||||||
|
|
||||||
# detection_image ([sensor_msgs::Image])
|
|
||||||
|
|
||||||
# Publishes an image of the detection image including the bounding boxes.
|
|
||||||
|
|
||||||
import rclpy
|
|
||||||
from rclpy.node import Node
|
|
||||||
|
|
||||||
from std_msgs.msg import String
|
|
||||||
from sensor_msgs.msg import Image
|
|
||||||
from cv_bridge import CvBridge
|
|
||||||
import argparse
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import torch
|
|
||||||
import torch.backends.cudnn as cudnn
|
|
||||||
|
|
||||||
FILE = Path(__file__).resolve()
|
|
||||||
ROOT = FILE.parents[0] # root directory
|
|
||||||
if str(ROOT) not in sys.path:
|
|
||||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
|
||||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
|
||||||
|
|
||||||
from models.common import DetectMultiBackend
|
|
||||||
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
|
|
||||||
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
|
|
||||||
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
|
|
||||||
from utils.plots import Annotator, colors, save_one_box
|
|
||||||
from utils.torch_utils import select_device, time_sync
|
|
||||||
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox
|
|
||||||
import numpy as np
|
|
||||||
from yolov4_msg.msg import BoundingBox, BoundingBoxes
|
|
||||||
from rclpy.clock import Clock
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def run(weights=ROOT / 'yolov3.pt', # model.pt path(s)
|
|
||||||
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
|
|
||||||
imgsz=1280, # inference size (pixels)
|
|
||||||
conf_thres=0.25, # confidence threshold
|
|
||||||
iou_thres=0.45, # NMS IOU threshold
|
|
||||||
max_det=1000, # maximum detections per image
|
|
||||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
|
||||||
view_img=False, # show results
|
|
||||||
save_txt=False, # save results to *.txt
|
|
||||||
save_conf=False, # save confidences in --save-txt labels
|
|
||||||
save_crop=False, # save cropped prediction boxes
|
|
||||||
nosave=False, # do not save images/videos
|
|
||||||
classes=None, # filter by class: --class 0, or --class 0 2 3
|
|
||||||
agnostic_nms=False, # class-agnostic NMS
|
|
||||||
augment=False, # augmented inference
|
|
||||||
visualize=False, # visualize features
|
|
||||||
update=False, # update all models
|
|
||||||
project=ROOT / 'runs/detect', # save results to project/name
|
|
||||||
name='exp', # save results to project/name
|
|
||||||
exist_ok=False, # existing project/name ok, do not increment
|
|
||||||
line_thickness=3, # bounding box thickness (pixels)
|
|
||||||
hide_labels=False, # hide labels
|
|
||||||
hide_conf=False, # hide confidences
|
|
||||||
half=False, # use FP16 half-precision inference
|
|
||||||
dnn=False, # use OpenCV DNN for ONNX inference
|
|
||||||
):
|
|
||||||
|
|
||||||
# Directories
|
|
||||||
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
|
||||||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
|
||||||
|
|
||||||
# Load model
|
|
||||||
device = select_device(device)
|
|
||||||
model = DetectMultiBackend(weights, device=device, dnn=dnn)
|
|
||||||
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
|
|
||||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
|
||||||
|
|
||||||
# Half
|
|
||||||
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
|
|
||||||
if pt:
|
|
||||||
model.model.half() if half else model.model.float()
|
|
||||||
|
|
||||||
# Padded resize
|
|
||||||
dataset_img = letterbox(source, imgsz, stride=stride, auto=pt)[0]
|
|
||||||
|
|
||||||
# Convert
|
|
||||||
dataset_img = dataset_img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
||||||
dataset_img = np.ascontiguousarray(dataset_img)
|
|
||||||
# Run inference
|
|
||||||
if pt and device.type != 'cpu':
|
|
||||||
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
|
|
||||||
dt, seen = [0.0, 0.0, 0.0], 0
|
|
||||||
bs = 1
|
|
||||||
t1 = time_sync()
|
|
||||||
im = dataset_img
|
|
||||||
im = torch.from_numpy(im).to(device)
|
|
||||||
im = im.half() if half else im.float() # uint8 to fp16/32
|
|
||||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
|
||||||
if len(im.shape) == 3:
|
|
||||||
im = im[None] # expand for batch dim
|
|
||||||
t2 = time_sync()
|
|
||||||
dt[0] += t2 - t1
|
|
||||||
pred = model(im, augment=augment, visualize=visualize)
|
|
||||||
t3 = time_sync()
|
|
||||||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
|
||||||
dt[2] += time_sync() - t3
|
|
||||||
|
|
||||||
## iterate through detections
|
|
||||||
for i, det in enumerate(pred):
|
|
||||||
seen += 1
|
|
||||||
path = '/home/parallels'
|
|
||||||
p, im0, frame = path, source.copy(), 'frame'
|
|
||||||
p = Path(p) # to Path
|
|
||||||
save_path = '/home/parallels/predict.jpeg'
|
|
||||||
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
|
||||||
|
|
||||||
time_stamp = Clock().now()
|
|
||||||
bounding_boxes_msg = BoundingBoxes()
|
|
||||||
bounding_boxes_msg.header.stamp = time_stamp.to_msg()
|
|
||||||
bounding_boxes_msg.header.frame_id = 'detection'
|
|
||||||
s = ''
|
|
||||||
if len(det):
|
|
||||||
# Rescale boxes from img_size to im0 size
|
|
||||||
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
|
|
||||||
# Print results
|
|
||||||
for c in det[:, -1].unique():
|
|
||||||
n = (det[:, -1] == c).sum() # detections per class
|
|
||||||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
|
||||||
|
|
||||||
# Write results
|
|
||||||
for *xyxy, conf, cls in reversed(det):
|
|
||||||
bounding_box = BoundingBox()
|
|
||||||
c = int(cls) # integer class
|
|
||||||
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
|
||||||
annotator.box_label(xyxy, label, color=colors(c, True))
|
|
||||||
bounding_box.probability = float(conf)
|
|
||||||
bounding_box.xmin = int(xyxy[0])
|
|
||||||
bounding_box.ymin = int(xyxy[1])
|
|
||||||
bounding_box.xmax = int(xyxy[2])
|
|
||||||
bounding_box.ymax = int(xyxy[3])
|
|
||||||
bounding_box.id = c
|
|
||||||
bounding_box.class_id = names[c]
|
|
||||||
bounding_boxes_msg.bounding_boxes.append(bounding_box)
|
|
||||||
# Print time (inference-only)
|
|
||||||
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
|
|
||||||
# Stream results
|
|
||||||
im0 = annotator.result()
|
|
||||||
# cv2.imwrite(save_path, im0)
|
|
||||||
return im0, bounding_boxes_msg
|
|
||||||
|
|
||||||
class DetectOnBag(Node):
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__('detect_on_bag')
|
|
||||||
self.subscription = self.create_subscription(
|
|
||||||
Image,
|
|
||||||
'/camera/color/image_raw',
|
|
||||||
self.image_callback,
|
|
||||||
10)
|
|
||||||
self.subscription # prevent unused variable warning
|
|
||||||
self.detected_img_pub = self.create_publisher(Image, '/detection_image', 10)
|
|
||||||
self.bboxes_pub = self.create_publisher(BoundingBoxes, '/bboxes', 10)
|
|
||||||
|
|
||||||
def image_callback(self, msg):
|
|
||||||
self.get_logger().info('Image')
|
|
||||||
print(msg.header.stamp)
|
|
||||||
|
|
||||||
bridge = CvBridge()
|
|
||||||
cv_image = bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')
|
|
||||||
detected_img, bboxes = run('src/yolov3/runs/train/exp14/weights/best.pt', cv_image)
|
|
||||||
self.detected_img_pub.publish(self.numpy_array_to_image_msg(detected_img))
|
|
||||||
bboxes.image_header = msg.header
|
|
||||||
self.bboxes_pub.publish(bboxes)
|
|
||||||
|
|
||||||
def numpy_array_to_image_msg(self, numpy_array):
|
|
||||||
# Create a CvBridge object
|
|
||||||
bridge = CvBridge()
|
|
||||||
|
|
||||||
# Convert the numpy array to a cv image
|
|
||||||
cv_image = cv2.cvtColor(numpy_array, cv2.COLOR_RGB2BGR)
|
|
||||||
|
|
||||||
# Convert the cv image to a ROS message
|
|
||||||
ros_image = bridge.cv2_to_imgmsg(cv_image, encoding="bgr8")
|
|
||||||
|
|
||||||
return ros_image
|
|
||||||
|
|
||||||
|
|
||||||
def main(args=None):
|
|
||||||
rclpy.init(args=args)
|
|
||||||
|
|
||||||
detect_on_bag = DetectOnBag()
|
|
||||||
|
|
||||||
rclpy.spin(detect_on_bag)
|
|
||||||
|
|
||||||
# Destroy the node explicitly
|
|
||||||
# (optional - otherwise it will be done automatically
|
|
||||||
# when the garbage collector destroys the node object)
|
|
||||||
detect_on_bag.destroy_node()
|
|
||||||
rclpy.shutdown()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
||||||
@ -1,7 +0,0 @@
|
|||||||
float64 probability
|
|
||||||
int64 xmin
|
|
||||||
int64 ymin
|
|
||||||
int64 xmax
|
|
||||||
int64 ymax
|
|
||||||
int16 id
|
|
||||||
string class_id
|
|
||||||
@ -1,3 +0,0 @@
|
|||||||
std_msgs/Header header
|
|
||||||
std_msgs/Header image_header
|
|
||||||
BoundingBox[] bounding_boxes
|
|
||||||
@ -1,26 +0,0 @@
|
|||||||
<?xml version="1.0"?>
|
|
||||||
<package format="3">
|
|
||||||
<name>yolov4_msg</name>
|
|
||||||
<version>0.1.0</version>
|
|
||||||
<description>
|
|
||||||
This is a ROS2 package for running yolov3 on rosbag
|
|
||||||
</description>
|
|
||||||
<maintainer email="myname@myemail.com">My Name</maintainer>
|
|
||||||
<license>MIT License</license>
|
|
||||||
|
|
||||||
<buildtool_depend>ament_cmake</buildtool_depend>
|
|
||||||
<build_depend>rclpy</build_depend>
|
|
||||||
<build_depend>std_msgs</build_depend>
|
|
||||||
|
|
||||||
<exec_depend>rclpy</exec_depend>
|
|
||||||
<exec_depend>std_msgs</exec_depend>
|
|
||||||
|
|
||||||
|
|
||||||
<build_depend>rosidl_default_generators</build_depend>
|
|
||||||
<exec_depend>rosidl_default_runtime</exec_depend>
|
|
||||||
<member_of_group>rosidl_interface_packages</member_of_group>
|
|
||||||
|
|
||||||
<export>
|
|
||||||
<build_type>ament_cmake</build_type>
|
|
||||||
</export>
|
|
||||||
</package>
|
|
||||||
|
Before Width: | Height: | Size: 476 KiB After Width: | Height: | Size: 476 KiB |
|
Before Width: | Height: | Size: 165 KiB After Width: | Height: | Size: 165 KiB |
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user