# YOLOv3 🚀 by Ultralytics, GPL-3.0 license """ PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/ Usage: import torch model = torch.hub.load('ultralytics/yolov3', 'yolov3') """ import torch def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): """Creates a specified model Arguments: name (str): name of model, i.e. 'yolov3' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes autoshape (bool): apply .autoshape() wrapper to model verbose (bool): print all information to screen device (str, torch.device, None): device to use for model parameters Returns: pytorch model """ from pathlib import Path from models.experimental import attempt_load from models.yolo import Model from utils.downloads import attempt_download from utils.general import check_requirements, intersect_dicts, set_logging from utils.torch_utils import select_device file = Path(__file__).resolve() check_requirements(exclude=('tensorboard', 'thop', 'opencv-python')) set_logging(verbose=verbose) save_dir = Path('') if str(name).endswith('.pt') else file.parent path = (save_dir / name).with_suffix('.pt') # checkpoint path try: device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device) if pretrained and channels == 3 and classes == 80: model = attempt_load(path, map_location=device) # download/load FP32 model else: cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path model = Model(cfg, channels, classes) # create model if pretrained: ckpt = torch.load(attempt_download(path), map_location=device) # load csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect model.load_state_dict(csd, strict=False) # load if len(ckpt['model'].names) == classes: model.names = ckpt['model'].names # set class names attribute if autoshape: model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS return model.to(device) except Exception as e: help_url = 'https://github.com/ultralytics/yolov5/issues/36' s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url raise Exception(s) from e def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None): # custom or local model return _create(path, autoshape=autoshape, verbose=verbose, device=device) def yolov3(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv3 model https://github.com/ultralytics/yolov3 return _create('yolov3', pretrained, channels, classes, autoshape, verbose, device) def yolov3_spp(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv3-SPP model https://github.com/ultralytics/yolov3 return _create('yolov3-spp', pretrained, channels, classes, autoshape, verbose, device) def yolov3_tiny(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv3-tiny model https://github.com/ultralytics/yolov3 return _create('yolov3-tiny', pretrained, channels, classes, autoshape, verbose, device) if __name__ == '__main__': model = _create(name='yolov3-tiny', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained # model = custom(path='path/to/model.pt') # custom # Verify inference from pathlib import Path import cv2 import numpy as np from PIL import Image imgs = ['data/images/zidane.jpg', # filename Path('data/images/zidane.jpg'), # Path 'https://ultralytics.com/images/zidane.jpg', # URI cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV Image.open('data/images/bus.jpg'), # PIL np.zeros((320, 640, 3))] # numpy results = model(imgs) # batched inference results.print() results.save()