#! /usr/bin/env python from dynamic_reconfigure.parameter_generator_catkin import bool_t from dynamic_reconfigure.parameter_generator_catkin import double_t from dynamic_reconfigure.parameter_generator_catkin import int_t from dynamic_reconfigure.parameter_generator_catkin import str_t # set up parameters that we care about PACKAGE = 'pcl_ros' def add_common_parameters(gen): # add(self, name, paramtype, level, description, default = None, min = None, # max = None, edit_method = '') gen.add('max_iterations', int_t, 0, 'The maximum number of iterations the algorithm will run for', 50, 0, 100000) gen.add('probability', double_t, 0, 'The desired probability of choosing at least one sample free from outliers', 0.99, 0.5, 0.99) gen.add('distance_threshold', double_t, 0, 'The distance to model threshold', 0.02, 0, 1.0) gen.add('optimize_coefficients', bool_t, 0, 'Model coefficient refinement', True) gen.add('radius_min', double_t, 0, 'The minimum allowed model radius (where applicable)', 0.0, 0, 1.0) gen.add('radius_max', double_t, 0, 'The maximum allowed model radius (where applicable)', 0.05, 0, 1.0) gen.add('eps_angle', double_t, 0, ('The maximum allowed difference between the model normal ' 'and the given axis in radians.'), 0.17, 0.0, 1.5707) gen.add('min_inliers', int_t, 0, 'The minimum number of inliers a model must have in order to be considered valid.', 0, 0, 100000) gen.add('input_frame', str_t, 0, ('The input TF frame the data should be transformed into, ' 'if input.header.frame_id is different.'), '') gen.add('output_frame', str_t, 0, ('The output TF frame the data should be transformed into, ' 'if input.header.frame_id is different.'), '')