#! /usr/bin/env python from dynamic_reconfigure.parameter_generator_catkin import int_t from dynamic_reconfigure.parameter_generator_catkin import double_t from dynamic_reconfigure.parameter_generator_catkin import bool_t from dynamic_reconfigure.parameter_generator_catkin import str_t # set up parameters that we care about PACKAGE = 'pcl_ros' def add_common_parameters(gen): # add(self, name, paramtype, level, description, default = None, min = None, # max = None, edit_method = "") gen.add("max_iterations", int_t, 0, "The maximum number of iterations the algorithm will run for", 50, 0, 100000) gen.add("probability", double_t, 0, "The desired probability of choosing at least one sample free from outliers", 0.99, 0.5, 0.99) gen.add("distance_threshold", double_t, 0, "The distance to model threshold", 0.02, 0, 1.0) gen.add("optimize_coefficients", bool_t, 0, "Model coefficient refinement", True) gen.add("radius_min", double_t, 0, "The minimum allowed model radius (where applicable)", 0.0, 0, 1.0) gen.add("radius_max", double_t, 0, "The maximum allowed model radius (where applicable)", 0.05, 0, 1.0) gen.add("eps_angle", double_t, 0, ("The maximum allowed difference between the model normal " "and the given axis in radians."), 0.17, 0.0, 1.5707) gen.add("min_inliers", int_t, 0, "The minimum number of inliers a model must have in order to be considered valid.", 0, 0, 100000) gen.add("input_frame", str_t, 0, ("The input TF frame the data should be transformed into, " "if input.header.frame_id is different."), "") gen.add("output_frame", str_t, 0, ("The output TF frame the data should be transformed into, " "if input.header.frame_id is different."), "")