"""YOLOv3 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov3/ Usage: import torch model = torch.hub.load('ultralytics/yolov3', 'yolov3_tiny') """ import torch def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): """Creates a specified YOLOv3 model Arguments: name (str): name of model, i.e. 'yolov3' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes autoshape (bool): apply YOLOv3 .autoshape() wrapper to model verbose (bool): print all information to screen device (str, torch.device, None): device to use for model parameters Returns: YOLOv3 pytorch model """ from pathlib import Path from models.yolo import Model, attempt_load from utils.general import check_requirements, set_logging from utils.google_utils import attempt_download from utils.torch_utils import select_device check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop')) set_logging(verbose=verbose) fname = Path(name).with_suffix('.pt') # checkpoint filename try: if pretrained and channels == 3 and classes == 80: model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model else: cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path model = Model(cfg, channels, classes) # create model if pretrained: ckpt = torch.load(attempt_download(fname), map_location=torch.device('cpu')) # load msd = model.state_dict() # model state_dict csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter model.load_state_dict(csd, strict=False) # load if len(ckpt['model'].names) == classes: model.names = ckpt['model'].names # set class names attribute if autoshape: model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS device = select_device('0' if torch.cuda.is_available() else 'cpu') if device is None else torch.device(device) return model.to(device) except Exception as e: help_url = 'https://github.com/ultralytics/yolov5/issues/36' s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url raise Exception(s) from e def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None): # YOLOv3 custom or local model return _create(path, autoshape=autoshape, verbose=verbose, device=device) def yolov3(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv3 model https://github.com/ultralytics/yolov3 return _create('yolov3', pretrained, channels, classes, autoshape, verbose, device) def yolov3_spp(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv3-SPP model https://github.com/ultralytics/yolov3 return _create('yolov3-spp', pretrained, channels, classes, autoshape, verbose, device) def yolov3_tiny(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): # YOLOv3-tiny model https://github.com/ultralytics/yolov3 return _create('yolov3-tiny', pretrained, channels, classes, autoshape, verbose, device) if __name__ == '__main__': model = _create(name='yolov3', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained # model = custom(path='path/to/model.pt') # custom # Verify inference import cv2 import numpy as np from PIL import Image imgs = ['data/images/zidane.jpg', # filename 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV Image.open('data/images/bus.jpg'), # PIL np.zeros((320, 640, 3))] # numpy results = model(imgs) # batched inference results.print() results.save()