/* Copyright (c) 2011-2014, Mathieu Labbe - IntRoLab - Universite de Sherbrooke All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Universite de Sherbrooke nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include // OpenCV stuff #include #include #include #include // for homography #include #ifdef HAVE_OPENCV_NONFREE #if CV_MAJOR_VERSION == 2 && CV_MINOR_VERSION >=4 #include #include #endif #endif #ifdef HAVE_OPENCV_XFEATURES2D #include #include #endif void showUsage() { printf( "\n" "Return similarity between two images (the number of similar features between the images).\n" "Usage :\n" " ./find_object-similarity [option] object.png scene.png\n" "Options: \n" " -inliers return inliers percentage : inliers / (inliers + outliers)\n" " -quiet don't show messages\n"); exit(-1); } enum {mTotal, mInliers}; int main(int argc, char * argv[]) { bool quiet = false; int method = mTotal; //total matches if(argc<3) { printf("Two images required!\n"); showUsage(); } else if(argc>3) { for(int i=1; i objectKeypoints; std::vector sceneKeypoints; cv::Mat objectDescriptors; cv::Mat sceneDescriptors; #if CV_MAJOR_VERSION < 3 //////////////////////////// // EXTRACT KEYPOINTS //////////////////////////// cv::SIFT sift; sift.detect(objectImg, objectKeypoints); sift.detect(sceneImg, sceneKeypoints); //////////////////////////// // EXTRACT DESCRIPTORS //////////////////////////// sift.compute(objectImg, objectKeypoints, objectDescriptors); sift.compute(sceneImg, sceneKeypoints, sceneDescriptors); #else //////////////////////////// // EXTRACT KEYPOINTS //////////////////////////// cv::Ptr sift = cv::xfeatures2d::SIFT::create(); sift->detect(objectImg, objectKeypoints); sift->detect(sceneImg, sceneKeypoints); //////////////////////////// // EXTRACT DESCRIPTORS //////////////////////////// sift->compute(objectImg, objectKeypoints, objectDescriptors); sift->compute(sceneImg, sceneKeypoints, sceneDescriptors); #endif //////////////////////////// // NEAREST NEIGHBOR MATCHING USING FLANN LIBRARY (included in OpenCV) //////////////////////////// cv::Mat results; cv::Mat dists; std::vector > matches; int k=2; // find the 2 nearest neighbors // Create Flann KDTree index cv::flann::Index flannIndex(sceneDescriptors, cv::flann::KDTreeIndexParams(), cvflann::FLANN_DIST_EUCLIDEAN); results = cv::Mat(objectDescriptors.rows, k, CV_32SC1); // Results index dists = cv::Mat(objectDescriptors.rows, k, CV_32FC1); // Distance results are CV_32FC1 // search (nearest neighbor) flannIndex.knnSearch(objectDescriptors, results, dists, k, cv::flann::SearchParams() ); //////////////////////////// // PROCESS NEAREST NEIGHBOR RESULTS //////////////////////////// // Find correspondences by NNDR (Nearest Neighbor Distance Ratio) float nndrRatio = 0.6f; std::vector mpts_1, mpts_2; // Used for homography std::vector indexes_1, indexes_2; // Used for homography std::vector outlier_mask; // Used for homography // Check if this descriptor matches with those of the objects for(int i=0; i(i,0) <= nndrRatio * dists.at(i,1)) { mpts_1.push_back(objectKeypoints.at(i).pt); indexes_1.push_back(i); mpts_2.push_back(sceneKeypoints.at(results.at(i,0)).pt); indexes_2.push_back(results.at(i,0)); } } if(method == mInliers) { // FIND HOMOGRAPHY unsigned int minInliers = 8; if(mpts_1.size() >= minInliers) { cv::Mat H = findHomography(mpts_1, mpts_2, cv::RANSAC, 1.0, outlier_mask); int inliers=0, outliers=0; for(unsigned int k=0; k