# YOLOv3 🚀 by Ultralytics, GPL-3.0 license """ TensorFlow, Keras and TFLite versions of Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127 Usage: $ python models/tf.py --weights yolov3.pt Export: $ python path/to/export.py --weights yolov3.pt --include saved_model pb tflite tfjs """ import argparse import logging import sys from copy import deepcopy from pathlib import Path from packaging import version FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH # ROOT = ROOT.relative_to(Path.cwd()) # relative import numpy as np import tensorflow as tf import torch import torch.nn as nn from keras import backend from keras.engine.base_layer import Layer from keras.engine.input_spec import InputSpec from keras.utils import conv_utils from tensorflow import keras from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, Concat, Conv, DWConv, Focus, autopad from models.experimental import CrossConv, MixConv2d, attempt_load from models.yolo import Detect from utils.activations import SiLU from utils.general import LOGGER, make_divisible, print_args # isort: off from tensorflow.python.util.tf_export import keras_export class TFBN(keras.layers.Layer): # TensorFlow BatchNormalization wrapper def __init__(self, w=None): super().__init__() self.bn = keras.layers.BatchNormalization( beta_initializer=keras.initializers.Constant(w.bias.numpy()), gamma_initializer=keras.initializers.Constant(w.weight.numpy()), moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()), moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()), epsilon=w.eps) def call(self, inputs): return self.bn(inputs) class TFMaxPool2d(keras.layers.Layer): # TensorFlow MAX Pooling def __init__(self, k, s, p, w=None): super().__init__() self.pool = keras.layers.MaxPool2D(pool_size=k, strides=s, padding='valid') def call(self, inputs): return self.pool(inputs) class TFZeroPad2d(keras.layers.Layer): # TensorFlow MAX Pooling def __init__(self, p, w=None): super().__init__() if version.parse(tf.__version__) < version.parse('2.11.0'): self.zero_pad = ZeroPadding2D(padding=p) else: self.zero_pad = keras.layers.ZeroPadding2D(padding=((p[0], p[1]), (p[2], p[3]))) def call(self, inputs): return self.zero_pad(inputs) class TFPad(keras.layers.Layer): def __init__(self, pad): super().__init__() self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) def call(self, inputs): return tf.pad(inputs, self.pad, mode='constant', constant_values=0) class TFConv(keras.layers.Layer): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): # ch_in, ch_out, weights, kernel, stride, padding, groups super().__init__() assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" assert isinstance(k, int), "Convolution with multiple kernels are not allowed." # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding) # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch conv = keras.layers.Conv2D( c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True, kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy())) self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity # activations if isinstance(w.act, nn.LeakyReLU): self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity elif isinstance(w.act, nn.Hardswish): self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity elif isinstance(w.act, (nn.SiLU, SiLU)): self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity else: raise Exception(f'no matching TensorFlow activation found for {w.act}') def call(self, inputs): return self.act(self.bn(self.conv(inputs))) class TFFocus(keras.layers.Layer): # Focus wh information into c-space def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv) def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c) # inputs = inputs / 255 # normalize 0-255 to 0-1 return self.conv(tf.concat([inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]], 3)) class TFBottleneck(keras.layers.Layer): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2) self.add = shortcut and c1 == c2 def call(self, inputs): return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) class TFConv2d(keras.layers.Layer): # Substitution for PyTorch nn.Conv2D def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): super().__init__() assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" self.conv = keras.layers.Conv2D( c2, k, s, 'VALID', use_bias=bias, kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()), bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, ) def call(self, inputs): return self.conv(inputs) class TFBottleneckCSP(keras.layers.Layer): # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2) self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3) self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4) self.bn = TFBN(w.bn) self.act = lambda x: keras.activations.relu(x, alpha=0.1) self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) def call(self, inputs): y1 = self.cv3(self.m(self.cv1(inputs))) y2 = self.cv2(inputs) return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) class TFC3(keras.layers.Layer): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) def call(self, inputs): return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) class TFSPP(keras.layers.Layer): # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13), w=None): super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k] def call(self, inputs): x = self.cv1(inputs) return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) class TFSPPF(keras.layers.Layer): # Spatial pyramid pooling-Fast layer def __init__(self, c1, c2, k=5, w=None): super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2) self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME') def call(self, inputs): x = self.cv1(inputs) y1 = self.m(x) y2 = self.m(y1) return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3)) class TFDetect(keras.layers.Layer): def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer super().__init__() self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [tf.zeros(1)] * self.nl # init grid self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32) self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2]) self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] self.training = False # set to False after building model self.imgsz = imgsz for i in range(self.nl): ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] self.grid[i] = self._make_grid(nx, ny) def call(self, inputs): z = [] # inference output x = [] for i in range(self.nl): x.append(self.m[i](inputs[i])) # x(bs,20,20,255) to x(bs,3,20,20,85) ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3]) if not self.training: # inference y = tf.sigmoid(x[i]) xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # Normalize xywh to 0-1 to reduce calibration error xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) y = tf.concat([xy, wh, y[..., 4:]], -1) z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no])) return x if self.training else (tf.concat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32) class TFUpsample(keras.layers.Layer): def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w' super().__init__() assert scale_factor == 2, "scale_factor must be 2" self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode) # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode) # with default arguments: align_corners=False, half_pixel_centers=False # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x, # size=(x.shape[1] * 2, x.shape[2] * 2)) def call(self, inputs): return self.upsample(inputs) class TFConcat(keras.layers.Layer): def __init__(self, dimension=1, w=None): super().__init__() assert dimension == 1, "convert only NCHW to NHWC concat" self.d = 3 def call(self, inputs): return tf.concat(inputs, self.d) def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3) LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m_str = m m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except NameError: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]: c1, c2 = ch[f], args[0] c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3]: args.insert(2, n) n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) elif m is Detect: args.append([ch[x + 1] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) args.append(imgsz) else: c2 = ch[f] tf_m = eval('TF' + m_str.replace('nn.', '')) m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \ else tf_m(*args, w=model.model[i]) # module torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type np = sum(x.numel() for x in torch_m_.parameters()) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) ch.append(c2) return keras.Sequential(layers), sorted(save) class TFModel: def __init__(self, cfg='yolov3.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict # Define model if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz) def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25): y = [] # outputs x = inputs for i, m in enumerate(self.model.layers): if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers x = m(x) # run y.append(x if m.i in self.savelist else None) # save output # Add TensorFlow NMS if tf_nms: boxes = self._xywh2xyxy(x[0][..., :4]) probs = x[0][:, :, 4:5] classes = x[0][:, :, 5:] scores = probs * classes if agnostic_nms: nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres) return nms, x[1] else: boxes = tf.expand_dims(boxes, 2) nms = tf.image.combined_non_max_suppression( boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False) return nms, x[1] return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...] # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85) # xywh = x[..., :4] # x(6300,4) boxes # conf = x[..., 4:5] # x(6300,1) confidences # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes # return tf.concat([conf, cls, xywh], 1) @staticmethod def _xywh2xyxy(xywh): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) class AgnosticNMS(keras.layers.Layer): # TF Agnostic NMS def call(self, input, topk_all, iou_thres, conf_thres): # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450 return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input, fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), name='agnostic_nms') @staticmethod def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS boxes, classes, scores = x class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) scores_inp = tf.reduce_max(scores, -1) selected_inds = tf.image.non_max_suppression( boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres) selected_boxes = tf.gather(boxes, selected_inds) padded_boxes = tf.pad(selected_boxes, paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]], mode="CONSTANT", constant_values=0.0) selected_scores = tf.gather(scores_inp, selected_inds) padded_scores = tf.pad(selected_scores, paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], mode="CONSTANT", constant_values=-1.0) selected_classes = tf.gather(class_inds, selected_inds) padded_classes = tf.pad(selected_classes, paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], mode="CONSTANT", constant_values=-1.0) valid_detections = tf.shape(selected_inds)[0] return padded_boxes, padded_scores, padded_classes, valid_detections def representative_dataset_gen(dataset, ncalib=100): # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): input = np.transpose(img, [1, 2, 0]) input = np.expand_dims(input, axis=0).astype(np.float32) input /= 255 yield [input] if n >= ncalib: break def run(weights=ROOT / 'yolov3.pt', # weights path imgsz=(640, 640), # inference size h,w batch_size=1, # batch size dynamic=False, # dynamic batch size ): # PyTorch model im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False) y = model(im) # inference model.info() # TensorFlow model im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) y = tf_model.predict(im) # inference # Keras model im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im)) keras_model.summary() LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.') @keras_export("keras.layers.ZeroPadding2D") class ZeroPadding2D(Layer): """Zero-padding layer for 2D input (e.g. picture). This layer can add rows and columns of zeros at the top, bottom, left and right side of an image tensor. Examples: >>> input_shape = (1, 1, 2, 2) >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) >>> print(x) [[[[0 1] [2 3]]]] >>> y = tf.keras.layers.ZeroPadding2D(padding=1)(x) >>> print(y) tf.Tensor( [[[[0 0] [0 0] [0 0] [0 0]] [[0 0] [0 1] [2 3] [0 0]] [[0 0] [0 0] [0 0] [0 0]]]], shape=(1, 3, 4, 2), dtype=int64) Args: padding: Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints. - If int: the same symmetric padding is applied to height and width. - If tuple of 2 ints: interpreted as two different symmetric padding values for height and width: `(symmetric_height_pad, symmetric_width_pad)`. - If tuple of 2 tuples of 2 ints: interpreted as `((top_pad, bottom_pad), (left_pad, right_pad))` data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch_size, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch_size, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: 4D tensor with shape: - If `data_format` is `"channels_last"`: `(batch_size, rows, cols, channels)` - If `data_format` is `"channels_first"`: `(batch_size, channels, rows, cols)` Output shape: 4D tensor with shape: - If `data_format` is `"channels_last"`: `(batch_size, padded_rows, padded_cols, channels)` - If `data_format` is `"channels_first"`: `(batch_size, channels, padded_rows, padded_cols)` """ def __init__(self, padding=(1, 1), data_format=None, **kwargs): super().__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) if isinstance(padding, int): self.padding = ((padding, padding), (padding, padding)) elif hasattr(padding, "__len__"): if len(padding) == 4: padding = ((padding[0], padding[1]), (padding[2], padding[3])) if len(padding) != 2: raise ValueError( f"`padding` should have two elements. Received: {padding}." ) height_padding = conv_utils.normalize_tuple( padding[0], 2, "1st entry of padding", allow_zero=True ) width_padding = conv_utils.normalize_tuple( padding[1], 2, "2nd entry of padding", allow_zero=True ) self.padding = (height_padding, width_padding) else: raise ValueError( "`padding` should be either an int, " "a tuple of 2 ints " "(symmetric_height_pad, symmetric_width_pad), " "or a tuple of 2 tuples of 2 ints " "((top_pad, bottom_pad), (left_pad, right_pad)). " f"Received: {padding}." ) self.input_spec = InputSpec(ndim=4) def compute_output_shape(self, input_shape): input_shape = tf.TensorShape(input_shape).as_list() if self.data_format == "channels_first": if input_shape[2] is not None: rows = input_shape[2] + self.padding[0][0] + self.padding[0][1] else: rows = None if input_shape[3] is not None: cols = input_shape[3] + self.padding[1][0] + self.padding[1][1] else: cols = None return tf.TensorShape([input_shape[0], input_shape[1], rows, cols]) elif self.data_format == "channels_last": if input_shape[1] is not None: rows = input_shape[1] + self.padding[0][0] + self.padding[0][1] else: rows = None if input_shape[2] is not None: cols = input_shape[2] + self.padding[1][0] + self.padding[1][1] else: cols = None return tf.TensorShape([input_shape[0], rows, cols, input_shape[3]]) def call(self, inputs): return backend.spatial_2d_padding( inputs, padding=self.padding, data_format=self.data_format ) def get_config(self): config = {"padding": self.padding, "data_format": self.data_format} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default=ROOT / 'yolov3.pt', help='weights path') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--dynamic', action='store_true', help='dynamic batch size') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(FILE.stem, opt) return opt def main(opt): run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)