greenhouse/hubconf.py
Glenn Jocher 76807fae71
YOLOv5 Forward Compatibility Update (#1569)
* YOLOv5 forward compatibility update

* add data dir

* ci test yolov3

* update build_targets()

* update build_targets()

* update build_targets()

* update yolov3-spp.yaml

* add yolov3-tiny.yaml

* add yolov3-tiny.yaml

* Update yolov3-tiny.yaml

* thop bug fix

* Detection() device bug fix

* Use torchvision.ops.nms()

* Remove redundant download mirror

* CI tests with yolov3-tiny

* Update README.md

* Synch train and test iou_thresh

* update requirements.txt

* Cat apriori autolabels

* Confusion matrix

* Autosplit

* Autosplit

* Update README.md

* AP no plot

* Update caching

* Update caching

* Caching bug fix

* --image-weights bug fix

* datasets bug fix

* mosaic plots bug fix

* plot_study

* boxes.max()

* boxes.max()

* boxes.max()

* boxes.max()

* boxes.max()

* boxes.max()

* update

* Update README

* Update README

* Update README.md

* Update README.md

* results png

* Update README

* Targets scaling bug fix

* update plot_study

* update plot_study

* update plot_study

* update plot_study

* Targets scaling bug fix

* Finish Readme.md

* Finish Readme.md

* Finish Readme.md

* Update README.md

* Creado con Colaboratory
2020-11-26 20:24:00 +01:00

106 lines
3.5 KiB
Python

"""File for accessing YOLOv3 via PyTorch Hub https://pytorch.org/hub/
Usage:
import torch
model = torch.hub.load('ultralytics/yolov3', 'yolov3', pretrained=True, channels=3, classes=80)
"""
from pathlib import Path
import torch
from models.yolo import Model
from utils.general import set_logging
from utils.google_utils import attempt_download
dependencies = ['torch', 'yaml']
set_logging()
def create(name, pretrained, channels, classes):
"""Creates a specified YOLOv3 model
Arguments:
name (str): name of model, i.e. 'yolov3_spp'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
Returns:
pytorch model
"""
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
try:
model = Model(config, channels, classes)
if pretrained:
fname = f'{name}.pt' # checkpoint filename
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
model.load_state_dict(state_dict, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
# model = model.autoshape() # for PIL/cv2/np inputs and NMS
return model
except Exception as e:
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
raise Exception(s) from e
def yolov3(pretrained=False, channels=3, classes=80):
"""YOLOv3 model from https://github.com/ultralytics/yolov3
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov3', pretrained, channels, classes)
def yolov3_spp(pretrained=False, channels=3, classes=80):
"""YOLOv3-SPP model from https://github.com/ultralytics/yolov3
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov3-spp', pretrained, channels, classes)
def yolov3_tiny(pretrained=False, channels=3, classes=80):
"""YOLOv3-tiny model from https://github.com/ultralytics/yolov3
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov3-tiny', pretrained, channels, classes)
if __name__ == '__main__':
model = create(name='yolov3', pretrained=True, channels=3, classes=80) # example
model = model.fuse().autoshape() # for PIL/cv2/np inputs and NMS
# Verify inference
from PIL import Image
imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')]
results = model(imgs)
results.show()
results.print()