greenhouse/example/main.cpp
matlabbe a1c5be1d5b Fixed some warnings...
git-svn-id: http://find-object.googlecode.com/svn/trunk/find_object@35 620bd6b2-0a58-f614-fd9a-1bd335dccda9
2011-11-23 18:08:33 +00:00

261 lines
7.5 KiB
C++

/*
* main.cpp
*
* Created on: 2011-11-15
* Author: matlab
*/
#include <stdio.h>
// Qt stuff
#include <QtCore/QTime>
#include <QtCore/QTimer>
#include <QtGui/QApplication>
#include <QtGui/QGraphicsRectItem>
#include <QtGui/QPen>
#include <QtGui/QColor>
// OpenCV stuff
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/calib3d/calib3d.hpp> // for homography
// From this project (see src folder)
#include "ObjWidget.h"
void showUsage()
{
printf("\n");
printf("Usage :\n");
printf(" ./example object.png scene.png\n");
exit(1);
}
int main(int argc, char * argv[])
{
if(argc<3)
{
showUsage();
}
QTime time;
time.start();
// GUI stuff
QApplication app(argc, argv);
ObjWidget objWidget;
ObjWidget sceneWidget;
//Load as grayscale
IplImage * objectImg = cvLoadImage(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
IplImage * sceneImg = cvLoadImage(argv[2], CV_LOAD_IMAGE_GRAYSCALE);
if(objectImg && sceneImg)
{
std::vector<cv::KeyPoint> objectKeypoints;
std::vector<cv::KeyPoint> sceneKeypoints;
cv::Mat objectDescriptors;
cv::Mat sceneDescriptors;
////////////////////////////
// EXTRACT KEYPOINTS
////////////////////////////
// The detector can be any of (see OpenCV features2d.hpp):
// cv::FeatureDetector * detector = new cv::OrbFeatureDetector();
// cv::FeatureDetector * detector = new cv::FastFeatureDetector();
// cv::FeatureDetector * detector = new cv::MserFeatureDetector();
// cv::FeatureDetector * detector = new cv::SiftFeatureDetector();
// cv::FeatureDetector * detector = new cv::SurfFeatureDetector();
// cv::FeatureDetector * detector = new cv::StarFeatureDetector();
cv::FeatureDetector * detector = new cv::SurfFeatureDetector();
detector->detect(objectImg, objectKeypoints);
printf("Object: %d keypoints detected in %d ms\n", (int)objectKeypoints.size(), time.restart());
detector->detect(sceneImg, sceneKeypoints);
printf("Scene: %d keypoints detected in %d ms\n", (int)sceneKeypoints.size(), time.restart());
////////////////////////////
// EXTRACT DESCRIPTORS
////////////////////////////
// The extractor can be any of (see OpenCV features2d.hpp):
// cv::DescriptorExtractor * extractor = new cv::BriefDescriptorExtractor();
// cv::DescriptorExtractor * extractor = new cv::OrbDescriptorExtractor();
// cv::DescriptorExtractor * extractor = new cv::SiftDescriptorExtractor();
// cv::DescriptorExtractor * extractor = new cv::SurfDescriptorExtractor();
cv::DescriptorExtractor * extractor = new cv::SurfDescriptorExtractor();
extractor->compute(objectImg, objectKeypoints, objectDescriptors);
printf("Object: %d descriptors extracted in %d ms\n", objectDescriptors.rows, time.restart());
extractor->compute(sceneImg, sceneKeypoints, sceneDescriptors);
printf("Scene: %d descriptors extracted in %d ms\n", sceneDescriptors.rows, time.restart());
////////////////////////////
// NEAREST NEIGHBOR MATCHING USING FLANN LIBRARY (included in OpenCV)
////////////////////////////
// Format descriptors for Flann
cv::Mat objectData;
cv::Mat sceneData;
if(objectDescriptors.type()!=CV_32F) {
objectDescriptors.convertTo(objectData, CV_32F); // make sure it's CV_32F
}
else {
objectData = objectDescriptors;
}
if(sceneDescriptors.type()!=CV_32F) {
sceneDescriptors.convertTo(sceneData, CV_32F); // make sure it's CV_32F
}
else {
sceneData = sceneDescriptors;
}
// Create Flann index
cv::flann::Index treeFlannIndex(sceneData, cv::flann::KDTreeIndexParams());
printf("Time creating FLANN index = %d ms\n", time.restart());
// search (nearest neighbor)
int k=2; // find the 2 nearest neighbors
cv::Mat results(objectData.rows, k, CV_32SC1); // Results index
cv::Mat dists(objectData.rows, k, CV_32FC1); // Distance results are CV_32FC1
treeFlannIndex.knnSearch(objectData, results, dists, k, cv::flann::SearchParams() ); // maximum number of leafs checked
printf("Time nearest neighbor search = %d ms\n", time.restart());
////////////////////////////
// PROCESS NEAREST NEIGHBOR RESULTS
////////////////////////////
// Set gui data
objWidget.setData(objectKeypoints, objectDescriptors, objectImg);
sceneWidget.setData(sceneKeypoints, sceneDescriptors, sceneImg);
// Find correspondences by NNDR (Nearest Neighbor Distance Ratio)
float nndrRatio = 0.6;
std::vector<cv::Point2f> mpts_1, mpts_2; // Used for homography
std::vector<int> indexes_1, indexes_2; // Used for homography
std::vector<uchar> outlier_mask; // Used for homography
for(int i=0; i<objectData.rows; ++i)
{
// Check if this descriptor matches with those of the objects
// Apply NNDR
if(dists.at<float>(i,0) <= nndrRatio * dists.at<float>(i,1))
{
mpts_1.push_back(objectKeypoints.at(i).pt);
indexes_1.push_back(i);
mpts_2.push_back(sceneKeypoints.at(results.at<int>(i,0)).pt);
indexes_2.push_back(results.at<int>(i,0));
}
}
// FIND HOMOGRAPHY
unsigned int minInliers = 8;
if(mpts_1.size() >= minInliers)
{
time.start();
cv::Mat H = findHomography(mpts_1,
mpts_2,
cv::RANSAC,
1.0,
outlier_mask);
printf("Time finding homography = %d ms\n", time.restart());
int inliers=0, outliers=0;
for(unsigned int k=0; k<mpts_1.size();++k)
{
if(outlier_mask.at(k))
{
++inliers;
}
else
{
++outliers;
}
}
QTransform hTransform(
H.at<double>(0,0), H.at<double>(1,0), H.at<double>(2,0),
H.at<double>(0,1), H.at<double>(1,1), H.at<double>(2,1),
H.at<double>(0,2), H.at<double>(1,2), H.at<double>(2,2));
// GUI : Change color and add homography rectangle
QColor color(Qt::green);
int alpha = 130;
color.setAlpha(alpha);
for(unsigned int k=0; k<mpts_1.size();++k)
{
if(outlier_mask.at(k))
{
objWidget.setKptColor(indexes_1.at(k), color);
sceneWidget.setKptColor(indexes_2.at(k), color);
}
else
{
objWidget.setKptColor(indexes_1.at(k), QColor(255,0,0,alpha));
sceneWidget.setKptColor(indexes_2.at(k), QColor(255,0,0,alpha));
}
}
QPen rectPen(color);
rectPen.setWidth(4);
QGraphicsRectItem * rectItem = new QGraphicsRectItem(objWidget.image().rect());
rectItem->setPen(rectPen);
rectItem->setTransform(hTransform);
sceneWidget.addRect(rectItem);
printf("Inliers=%d Outliers=%d\n", inliers, outliers);
}
else
{
printf("Not enough matches (%d) for homography...\n", (int)mpts_1.size());
}
// Wait for gui
objWidget.setGraphicsViewMode(false);
objWidget.setWindowTitle("Object");
if(objWidget.image().width() <= 800)
{
objWidget.setGeometry(0, 0, objWidget.image().width(), objWidget.image().height());
}
else
{
objWidget.setGeometry(0, 0, 800, 600);
objWidget.setAutoScale(false);
}
objWidget.show();
sceneWidget.setGraphicsViewMode(false);
sceneWidget.setWindowTitle("Scene");
if(sceneWidget.image().width() <= 800)
{
sceneWidget.setGeometry(0, 0, sceneWidget.image().width(), sceneWidget.image().height());
}
else
{
sceneWidget.setGeometry(0, 0, 800, 600);
sceneWidget.setAutoScale(false);
}
sceneWidget.show();
int r = app.exec();
printf("Closing...\n");
////////////////////////////
//Cleanup
////////////////////////////
delete detector;
delete extractor;
if(objectImg) {
cvReleaseImage(&objectImg);
}
if(sceneImg) {
cvReleaseImage(&sceneImg);
}
return r;
}
else
{
if(objectImg) {
cvReleaseImage(&objectImg);
}
if(sceneImg) {
cvReleaseImage(&sceneImg);
}
printf("Images are not valid!\n");
showUsage();
}
return 1;
}