git-subtree-dir: find-object git-subtree-mainline: 9bd639e88c266d990f53b2799ba476d34cfc9c89 git-subtree-split: 635efcd6220cabc258b88c54b1ae4279035bbe31
347 lines
11 KiB
C++
347 lines
11 KiB
C++
/*
|
|
Copyright (c) 2011-2014, Mathieu Labbe - IntRoLab - Universite de Sherbrooke
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the Universite de Sherbrooke nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
// Qt stuff
|
|
#include <QtCore/QTime>
|
|
#include <QtCore/QTimer>
|
|
#include <QApplication>
|
|
#include <QGraphicsRectItem>
|
|
#include <QPen>
|
|
#include <QColor>
|
|
|
|
// OpenCV stuff
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/features2d/features2d.hpp>
|
|
#include <opencv2/calib3d/calib3d.hpp> // for homography
|
|
|
|
#include <opencv2/opencv_modules.hpp>
|
|
|
|
#ifdef HAVE_OPENCV_NONFREE
|
|
#if CV_MAJOR_VERSION == 2 && CV_MINOR_VERSION >=4
|
|
#include <opencv2/nonfree/gpu.hpp>
|
|
#include <opencv2/nonfree/features2d.hpp>
|
|
#endif
|
|
#endif
|
|
#ifdef HAVE_OPENCV_XFEATURES2D
|
|
#include <opencv2/xfeatures2d.hpp>
|
|
#include <opencv2/xfeatures2d/cuda.hpp>
|
|
#endif
|
|
|
|
|
|
// From this project
|
|
#include "find_object/ObjWidget.h"
|
|
#include "find_object/QtOpenCV.h"
|
|
|
|
using namespace find_object;
|
|
|
|
void showUsage()
|
|
{
|
|
printf("\n");
|
|
printf("Usage :\n");
|
|
printf(" ./example object.png scene.png\n");
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char * argv[])
|
|
{
|
|
if(argc<3)
|
|
{
|
|
showUsage();
|
|
}
|
|
QTime time;
|
|
|
|
// GUI stuff
|
|
QApplication app(argc, argv);
|
|
|
|
time.start();
|
|
//Load as grayscale
|
|
cv::Mat objectImg = cv::imread(argv[1], cv::IMREAD_GRAYSCALE);
|
|
cv::Mat sceneImg = cv::imread(argv[2], cv::IMREAD_GRAYSCALE);
|
|
|
|
if(!objectImg.empty() && !sceneImg.empty())
|
|
{
|
|
printf("Loading images: %d ms\n", time.restart());
|
|
std::vector<cv::KeyPoint> objectKeypoints;
|
|
std::vector<cv::KeyPoint> sceneKeypoints;
|
|
cv::Mat objectDescriptors;
|
|
cv::Mat sceneDescriptors;
|
|
|
|
////////////////////////////
|
|
// EXTRACT KEYPOINTS
|
|
////////////////////////////
|
|
cv::Ptr<cv::FeatureDetector> detector;
|
|
// The detector can be any of (see OpenCV features2d.hpp):
|
|
#if CV_MAJOR_VERSION == 2
|
|
// detector = cv::Ptr(new cv::DenseFeatureDetector());
|
|
// detector = cv::Ptr(new cv::FastFeatureDetector());
|
|
// detector = cv::Ptr(new cv::GFTTDetector());
|
|
// detector = cv::Ptr(new cv::MSER());
|
|
// detector = cv::Ptr(new cv::ORB());
|
|
detector = cv::Ptr<cv::FeatureDetector>(new cv::SIFT());
|
|
// detector = cv::Ptr(new cv::StarFeatureDetector());
|
|
// detector = cv::Ptr(new cv::SURF(600.0));
|
|
// detector = cv::Ptr(new cv::BRISK());
|
|
#elif CV_MAJOR_VERSION < 4 || (CV_MAJOR_VERSION == 4 && CV_MINOR_VERSION < 3)
|
|
detector = cv::xfeatures2d::SIFT::create();
|
|
#else // >= 4.3.0
|
|
detector = cv::SIFT::create();
|
|
#endif
|
|
detector->detect(objectImg, objectKeypoints);
|
|
printf("Object: %d keypoints detected in %d ms\n", (int)objectKeypoints.size(), time.restart());
|
|
detector->detect(sceneImg, sceneKeypoints);
|
|
printf("Scene: %d keypoints detected in %d ms\n", (int)sceneKeypoints.size(), time.restart());
|
|
|
|
////////////////////////////
|
|
// EXTRACT DESCRIPTORS
|
|
////////////////////////////
|
|
cv::Ptr<cv::DescriptorExtractor> extractor;
|
|
#if CV_MAJOR_VERSION == 2
|
|
// The extractor can be any of (see OpenCV features2d.hpp):
|
|
// extractor = cv::Ptr(new cv::BriefDescriptorExtractor());
|
|
// extractor = cv::Ptr(new cv::ORB());
|
|
extractor = cv::Ptr<cv::DescriptorExtractor>(new cv::SIFT());
|
|
// extractor = cv::Ptr(new cv::SURF(600.0));
|
|
// extractor = cv::Ptr(new cv::BRISK());
|
|
// extractor = cv::Ptr(new cv::FREAK());
|
|
#elif CV_MAJOR_VERSION < 4 || (CV_MAJOR_VERSION == 4 && CV_MINOR_VERSION < 3)
|
|
extractor = cv::xfeatures2d::SIFT::create();
|
|
#else // >= 4.3.0
|
|
extractor = cv::SIFT::create();
|
|
#endif
|
|
extractor->compute(objectImg, objectKeypoints, objectDescriptors);
|
|
printf("Object: %d descriptors extracted in %d ms\n", objectDescriptors.rows, time.restart());
|
|
extractor->compute(sceneImg, sceneKeypoints, sceneDescriptors);
|
|
printf("Scene: %d descriptors extracted in %d ms\n", sceneDescriptors.rows, time.restart());
|
|
|
|
////////////////////////////
|
|
// NEAREST NEIGHBOR MATCHING USING FLANN LIBRARY (included in OpenCV)
|
|
////////////////////////////
|
|
cv::Mat results;
|
|
cv::Mat dists;
|
|
std::vector<std::vector<cv::DMatch> > matches;
|
|
int k=2; // find the 2 nearest neighbors
|
|
bool useBFMatcher = false; // SET TO TRUE TO USE BRUTE FORCE MATCHER
|
|
if(objectDescriptors.type()==CV_8U)
|
|
{
|
|
// Binary descriptors detected (from ORB, Brief, BRISK, FREAK)
|
|
printf("Binary descriptors detected...\n");
|
|
if(useBFMatcher)
|
|
{
|
|
cv::BFMatcher matcher(cv::NORM_HAMMING); // use cv::NORM_HAMMING2 for ORB descriptor with WTA_K == 3 or 4 (see ORB constructor)
|
|
matcher.knnMatch(objectDescriptors, sceneDescriptors, matches, k);
|
|
}
|
|
else
|
|
{
|
|
// Create Flann LSH index
|
|
cv::flann::Index flannIndex(sceneDescriptors, cv::flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);
|
|
printf("Time creating FLANN LSH index = %d ms\n", time.restart());
|
|
|
|
// search (nearest neighbor)
|
|
flannIndex.knnSearch(objectDescriptors, results, dists, k, cv::flann::SearchParams() );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// assume it is CV_32F
|
|
printf("Float descriptors detected...\n");
|
|
if(useBFMatcher)
|
|
{
|
|
cv::BFMatcher matcher(cv::NORM_L2);
|
|
matcher.knnMatch(objectDescriptors, sceneDescriptors, matches, k);
|
|
}
|
|
else
|
|
{
|
|
// Create Flann KDTree index
|
|
cv::flann::Index flannIndex(sceneDescriptors, cv::flann::KDTreeIndexParams(), cvflann::FLANN_DIST_EUCLIDEAN);
|
|
printf("Time creating FLANN KDTree index = %d ms\n", time.restart());
|
|
|
|
// search (nearest neighbor)
|
|
flannIndex.knnSearch(objectDescriptors, results, dists, k, cv::flann::SearchParams() );
|
|
}
|
|
}
|
|
printf("Time nearest neighbor search = %d ms\n", time.restart());
|
|
|
|
// Conversion to CV_32F if needed
|
|
if(dists.type() == CV_32S)
|
|
{
|
|
cv::Mat temp;
|
|
dists.convertTo(temp, CV_32F);
|
|
dists = temp;
|
|
}
|
|
|
|
|
|
////////////////////////////
|
|
// PROCESS NEAREST NEIGHBOR RESULTS
|
|
////////////////////////////
|
|
// Set gui data
|
|
ObjWidget objWidget(0, objectKeypoints, QMultiMap<int,int>(), cvtCvMat2QImage(objectImg));
|
|
ObjWidget sceneWidget(0, sceneKeypoints, QMultiMap<int,int>(), cvtCvMat2QImage(sceneImg));
|
|
|
|
// Find correspondences by NNDR (Nearest Neighbor Distance Ratio)
|
|
float nndrRatio = 0.8f;
|
|
std::vector<cv::Point2f> mpts_1, mpts_2; // Used for homography
|
|
std::vector<int> indexes_1, indexes_2; // Used for homography
|
|
std::vector<uchar> outlier_mask; // Used for homography
|
|
// Check if this descriptor matches with those of the objects
|
|
if(!useBFMatcher)
|
|
{
|
|
for(int i=0; i<objectDescriptors.rows; ++i)
|
|
{
|
|
// Apply NNDR
|
|
//printf("q=%d dist1=%f dist2=%f\n", i, dists.at<float>(i,0), dists.at<float>(i,1));
|
|
if(results.at<int>(i,0) >= 0 && results.at<int>(i,1) >= 0 &&
|
|
dists.at<float>(i,0) <= nndrRatio * dists.at<float>(i,1))
|
|
{
|
|
mpts_1.push_back(objectKeypoints.at(i).pt);
|
|
indexes_1.push_back(i);
|
|
|
|
mpts_2.push_back(sceneKeypoints.at(results.at<int>(i,0)).pt);
|
|
indexes_2.push_back(results.at<int>(i,0));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(unsigned int i=0; i<matches.size(); ++i)
|
|
{
|
|
// Apply NNDR
|
|
//printf("q=%d dist1=%f dist2=%f\n", matches.at(i).at(0).queryIdx, matches.at(i).at(0).distance, matches.at(i).at(1).distance);
|
|
if(matches.at(i).size() == 2 &&
|
|
matches.at(i).at(0).distance <= nndrRatio * matches.at(i).at(1).distance)
|
|
{
|
|
mpts_1.push_back(objectKeypoints.at(matches.at(i).at(0).queryIdx).pt);
|
|
indexes_1.push_back(matches.at(i).at(0).queryIdx);
|
|
|
|
mpts_2.push_back(sceneKeypoints.at(matches.at(i).at(0).trainIdx).pt);
|
|
indexes_2.push_back(matches.at(i).at(0).trainIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIND HOMOGRAPHY
|
|
unsigned int minInliers = 8;
|
|
if(mpts_1.size() >= minInliers)
|
|
{
|
|
time.start();
|
|
cv::Mat H = findHomography(mpts_1,
|
|
mpts_2,
|
|
cv::RANSAC,
|
|
1.0,
|
|
outlier_mask);
|
|
printf("Time finding homography = %d ms\n", time.restart());
|
|
int inliers=0, outliers=0;
|
|
for(unsigned int k=0; k<mpts_1.size();++k)
|
|
{
|
|
if(outlier_mask.at(k))
|
|
{
|
|
++inliers;
|
|
}
|
|
else
|
|
{
|
|
++outliers;
|
|
}
|
|
}
|
|
QTransform hTransform(
|
|
H.at<double>(0,0), H.at<double>(1,0), H.at<double>(2,0),
|
|
H.at<double>(0,1), H.at<double>(1,1), H.at<double>(2,1),
|
|
H.at<double>(0,2), H.at<double>(1,2), H.at<double>(2,2));
|
|
|
|
// GUI : Change color and add homography rectangle
|
|
QColor color(Qt::green);
|
|
int alpha = 130;
|
|
color.setAlpha(alpha);
|
|
for(unsigned int k=0; k<mpts_1.size();++k)
|
|
{
|
|
if(outlier_mask.at(k))
|
|
{
|
|
objWidget.setKptColor(indexes_1.at(k), color);
|
|
sceneWidget.setKptColor(indexes_2.at(k), color);
|
|
}
|
|
else
|
|
{
|
|
objWidget.setKptColor(indexes_1.at(k), QColor(255,0,0,alpha));
|
|
sceneWidget.setKptColor(indexes_2.at(k), QColor(255,0,0,alpha));
|
|
}
|
|
}
|
|
QPen rectPen(color);
|
|
rectPen.setWidth(4);
|
|
QGraphicsRectItem * rectItem = new QGraphicsRectItem(objWidget.pixmap().rect());
|
|
rectItem->setPen(rectPen);
|
|
rectItem->setTransform(hTransform);
|
|
sceneWidget.addRect(rectItem);
|
|
printf("Inliers=%d Outliers=%d\n", inliers, outliers);
|
|
}
|
|
else
|
|
{
|
|
printf("Not enough matches (%d) for homography...\n", (int)mpts_1.size());
|
|
}
|
|
|
|
// Wait for gui
|
|
objWidget.setGraphicsViewMode(false);
|
|
objWidget.setWindowTitle("Object");
|
|
if(objWidget.pixmap().width() <= 800)
|
|
{
|
|
objWidget.setMinimumSize(objWidget.pixmap().width(), objWidget.pixmap().height());
|
|
}
|
|
else
|
|
{
|
|
objWidget.setMinimumSize(800, 600);
|
|
objWidget.setAutoScale(false);
|
|
}
|
|
|
|
sceneWidget.setGraphicsViewMode(false);
|
|
sceneWidget.setWindowTitle("Scene");
|
|
if(sceneWidget.pixmap().width() <= 800)
|
|
{
|
|
sceneWidget.setMinimumSize(sceneWidget.pixmap().width(), sceneWidget.pixmap().height());
|
|
}
|
|
else
|
|
{
|
|
sceneWidget.setMinimumSize(800, 600);
|
|
sceneWidget.setAutoScale(false);
|
|
}
|
|
|
|
sceneWidget.show();
|
|
objWidget.show();
|
|
|
|
int r = app.exec();
|
|
printf("Closing...\n");
|
|
|
|
return r;
|
|
}
|
|
else
|
|
{
|
|
printf("Images are not valid!\n");
|
|
showUsage();
|
|
}
|
|
|
|
return 1;
|
|
}
|