* YOLOv5 forward compatibility update * add data dir * ci test yolov3 * update build_targets() * update build_targets() * update build_targets() * update yolov3-spp.yaml * add yolov3-tiny.yaml * add yolov3-tiny.yaml * Update yolov3-tiny.yaml * thop bug fix * Detection() device bug fix * Use torchvision.ops.nms() * Remove redundant download mirror * CI tests with yolov3-tiny * Update README.md * Synch train and test iou_thresh * update requirements.txt * Cat apriori autolabels * Confusion matrix * Autosplit * Autosplit * Update README.md * AP no plot * Update caching * Update caching * Caching bug fix * --image-weights bug fix * datasets bug fix * mosaic plots bug fix * plot_study * boxes.max() * boxes.max() * boxes.max() * boxes.max() * boxes.max() * boxes.max() * update * Update README * Update README * Update README.md * Update README.md * results png * Update README * Targets scaling bug fix * update plot_study * update plot_study * update plot_study * update plot_study * Targets scaling bug fix * Finish Readme.md * Finish Readme.md * Finish Readme.md * Update README.md * Creado con Colaboratory
56 lines
4.4 KiB
YAML
56 lines
4.4 KiB
YAML
name: Greetings
|
|
|
|
on: [pull_request_target, issues]
|
|
|
|
jobs:
|
|
greeting:
|
|
runs-on: ubuntu-latest
|
|
steps:
|
|
- uses: actions/first-interaction@v1
|
|
with:
|
|
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
|
pr-message: |
|
|
Hello @${{ github.actor }}, thank you for submitting a PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
|
|
- Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master update by running the following, replacing 'feature' with the name of your local branch:
|
|
```bash
|
|
git remote add upstream https://github.com/ultralytics/yolov3.git
|
|
git fetch upstream
|
|
git checkout feature # <----- replace 'feature' with local branch name
|
|
git rebase upstream/master
|
|
git push -u origin -f
|
|
```
|
|
- Verify all Continuous Integration (CI) **checks are passing**.
|
|
- Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee
|
|
|
|
issue-message: |
|
|
Hello @${{ github.actor }}, thank you for your interest in 🚀 YOLOv3! Please visit our ⭐️ [Tutorials](https://github.com/ultralytics/yolov3/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607).
|
|
|
|
If this is a 🐛 Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
|
|
|
|
If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data#visualize) if available.
|
|
|
|
For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
|
|
|
|
## Requirements
|
|
|
|
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
|
|
```bash
|
|
$ pip install -r requirements.txt
|
|
```
|
|
|
|
## Environments
|
|
|
|
YOLOv3 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
|
|
|
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
|
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov3](https://www.kaggle.com/ultralytics/yolov3)
|
|
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
|
|
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov3. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart) 
|
|
|
|
## Status
|
|
|
|

|
|
|
|
If this badge is green, all [YOLOv3 GitHub Actions](https://github.com/ultralytics/yolov3/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv3 training ([train.py](https://github.com/ultralytics/yolov3/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov3/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov3/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov3/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
|
|