main code
update aux training
This commit is contained in:
parent
f7945dc747
commit
ec69700a9c
499
utils/loss.py
499
utils/loss.py
@ -1163,3 +1163,502 @@ class ComputeLossBinOTA:
|
||||
anch.append(anchors[a]) # anchors
|
||||
|
||||
return indices, anch
|
||||
|
||||
|
||||
class ComputeLossAuxOTA:
|
||||
# Compute losses
|
||||
def __init__(self, model, autobalance=False):
|
||||
super(ComputeLossAuxOTA, self).__init__()
|
||||
device = next(model.parameters()).device # get model device
|
||||
h = model.hyp # hyperparameters
|
||||
|
||||
# Define criteria
|
||||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
||||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||||
|
||||
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
||||
|
||||
# Focal loss
|
||||
g = h['fl_gamma'] # focal loss gamma
|
||||
if g > 0:
|
||||
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||
|
||||
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
|
||||
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
|
||||
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
|
||||
for k in 'na', 'nc', 'nl', 'anchors', 'stride':
|
||||
setattr(self, k, getattr(det, k))
|
||||
|
||||
def __call__(self, p, targets, imgs): # predictions, targets, model
|
||||
device = targets.device
|
||||
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||
bs_aux, as_aux_, gjs_aux, gis_aux, targets_aux, anchors_aux = self.build_targets2(p[:self.nl], targets, imgs)
|
||||
bs, as_, gjs, gis, targets, anchors = self.build_targets(p[:self.nl], targets, imgs)
|
||||
pre_gen_gains_aux = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
|
||||
pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
|
||||
|
||||
|
||||
# Losses
|
||||
for i in range(self.nl): # layer index, layer predictions
|
||||
pi = p[i]
|
||||
pi_aux = p[i+self.nl]
|
||||
b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
|
||||
b_aux, a_aux, gj_aux, gi_aux = bs_aux[i], as_aux_[i], gjs_aux[i], gis_aux[i] # image, anchor, gridy, gridx
|
||||
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
||||
tobj_aux = torch.zeros_like(pi_aux[..., 0], device=device) # target obj
|
||||
|
||||
n = b.shape[0] # number of targets
|
||||
n_aux = b_aux.shape[0] # number of targets
|
||||
if n:
|
||||
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
||||
ps_aux = pi_aux[b_aux, a_aux, gj_aux, gi_aux] # prediction subset corresponding to targets
|
||||
|
||||
# Regression
|
||||
grid = torch.stack([gi, gj], dim=1)
|
||||
grid_aux = torch.stack([gi_aux, gj_aux], dim=1)
|
||||
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
||||
pxy_aux = ps_aux[:, :2].sigmoid() * 2. - 0.5
|
||||
#pxy = ps[:, :2].sigmoid() * 3. - 1.
|
||||
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
||||
pwh_aux = (ps_aux[:, 2:4].sigmoid() * 2) ** 2 * anchors_aux[i]
|
||||
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||
pbox_aux = torch.cat((pxy_aux, pwh_aux), 1) # predicted box
|
||||
selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
|
||||
selected_tbox_aux = targets_aux[i][:, 2:6] * pre_gen_gains_aux[i]
|
||||
selected_tbox[:, :2] -= grid
|
||||
selected_tbox_aux[:, :2] -= grid_aux
|
||||
iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||
iou_aux = bbox_iou(pbox_aux.T, selected_tbox_aux, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||
lbox += (1.0 - iou).mean() + 0.25 * (1.0 - iou_aux).mean() # iou loss
|
||||
|
||||
# Objectness
|
||||
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||||
tobj_aux[b_aux, a_aux, gj_aux, gi_aux] = (1.0 - self.gr) + self.gr * iou_aux.detach().clamp(0).type(tobj_aux.dtype) # iou ratio
|
||||
|
||||
# Classification
|
||||
selected_tcls = targets[i][:, 1].long()
|
||||
selected_tcls_aux = targets_aux[i][:, 1].long()
|
||||
if self.nc > 1: # cls loss (only if multiple classes)
|
||||
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
|
||||
t_aux = torch.full_like(ps_aux[:, 5:], self.cn, device=device) # targets
|
||||
t[range(n), selected_tcls] = self.cp
|
||||
t_aux[range(n_aux), selected_tcls_aux] = self.cp
|
||||
lcls += self.BCEcls(ps[:, 5:], t) + 0.25 * self.BCEcls(ps_aux[:, 5:], t_aux) # BCE
|
||||
|
||||
# Append targets to text file
|
||||
# with open('targets.txt', 'a') as file:
|
||||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||
|
||||
obji = self.BCEobj(pi[..., 4], tobj)
|
||||
obji_aux = self.BCEobj(pi_aux[..., 4], tobj_aux)
|
||||
lobj += obji * self.balance[i] + 0.25 * obji_aux * self.balance[i] # obj loss
|
||||
if self.autobalance:
|
||||
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
||||
|
||||
if self.autobalance:
|
||||
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
||||
lbox *= self.hyp['box']
|
||||
lobj *= self.hyp['obj']
|
||||
lcls *= self.hyp['cls']
|
||||
bs = tobj.shape[0] # batch size
|
||||
|
||||
loss = lbox + lobj + lcls
|
||||
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
||||
|
||||
def build_targets(self, p, targets, imgs):
|
||||
|
||||
indices, anch = self.find_3_positive(p, targets)
|
||||
|
||||
matching_bs = [[] for pp in p]
|
||||
matching_as = [[] for pp in p]
|
||||
matching_gjs = [[] for pp in p]
|
||||
matching_gis = [[] for pp in p]
|
||||
matching_targets = [[] for pp in p]
|
||||
matching_anchs = [[] for pp in p]
|
||||
|
||||
nl = len(p)
|
||||
|
||||
for batch_idx in range(p[0].shape[0]):
|
||||
|
||||
b_idx = targets[:, 0]==batch_idx
|
||||
this_target = targets[b_idx]
|
||||
if this_target.shape[0] == 0:
|
||||
continue
|
||||
|
||||
txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
|
||||
txyxy = xywh2xyxy(txywh)
|
||||
|
||||
pxyxys = []
|
||||
p_cls = []
|
||||
p_obj = []
|
||||
from_which_layer = []
|
||||
all_b = []
|
||||
all_a = []
|
||||
all_gj = []
|
||||
all_gi = []
|
||||
all_anch = []
|
||||
|
||||
for i, pi in enumerate(p):
|
||||
|
||||
b, a, gj, gi = indices[i]
|
||||
idx = (b == batch_idx)
|
||||
b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
|
||||
all_b.append(b)
|
||||
all_a.append(a)
|
||||
all_gj.append(gj)
|
||||
all_gi.append(gi)
|
||||
all_anch.append(anch[i][idx])
|
||||
from_which_layer.append(torch.ones(size=(len(b),)) * i)
|
||||
|
||||
fg_pred = pi[b, a, gj, gi]
|
||||
p_obj.append(fg_pred[:, 4:5])
|
||||
p_cls.append(fg_pred[:, 5:])
|
||||
|
||||
grid = torch.stack([gi, gj], dim=1)
|
||||
pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
|
||||
#pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
|
||||
pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
|
||||
pxywh = torch.cat([pxy, pwh], dim=-1)
|
||||
pxyxy = xywh2xyxy(pxywh)
|
||||
pxyxys.append(pxyxy)
|
||||
|
||||
pxyxys = torch.cat(pxyxys, dim=0)
|
||||
if pxyxys.shape[0] == 0:
|
||||
continue
|
||||
p_obj = torch.cat(p_obj, dim=0)
|
||||
p_cls = torch.cat(p_cls, dim=0)
|
||||
from_which_layer = torch.cat(from_which_layer, dim=0)
|
||||
all_b = torch.cat(all_b, dim=0)
|
||||
all_a = torch.cat(all_a, dim=0)
|
||||
all_gj = torch.cat(all_gj, dim=0)
|
||||
all_gi = torch.cat(all_gi, dim=0)
|
||||
all_anch = torch.cat(all_anch, dim=0)
|
||||
|
||||
pair_wise_iou = box_iou(txyxy, pxyxys)
|
||||
|
||||
pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
|
||||
|
||||
top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
|
||||
dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
|
||||
|
||||
gt_cls_per_image = (
|
||||
F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
|
||||
.float()
|
||||
.unsqueeze(1)
|
||||
.repeat(1, pxyxys.shape[0], 1)
|
||||
)
|
||||
|
||||
num_gt = this_target.shape[0]
|
||||
cls_preds_ = (
|
||||
p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
||||
* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
||||
)
|
||||
|
||||
y = cls_preds_.sqrt_()
|
||||
pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
||||
torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
|
||||
).sum(-1)
|
||||
del cls_preds_
|
||||
|
||||
cost = (
|
||||
pair_wise_cls_loss
|
||||
+ 3.0 * pair_wise_iou_loss
|
||||
)
|
||||
|
||||
matching_matrix = torch.zeros_like(cost)
|
||||
|
||||
for gt_idx in range(num_gt):
|
||||
_, pos_idx = torch.topk(
|
||||
cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
|
||||
)
|
||||
matching_matrix[gt_idx][pos_idx] = 1.0
|
||||
|
||||
del top_k, dynamic_ks
|
||||
anchor_matching_gt = matching_matrix.sum(0)
|
||||
if (anchor_matching_gt > 1).sum() > 0:
|
||||
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
||||
matching_matrix[:, anchor_matching_gt > 1] *= 0.0
|
||||
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
|
||||
fg_mask_inboxes = matching_matrix.sum(0) > 0.0
|
||||
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
||||
|
||||
from_which_layer = from_which_layer[fg_mask_inboxes]
|
||||
all_b = all_b[fg_mask_inboxes]
|
||||
all_a = all_a[fg_mask_inboxes]
|
||||
all_gj = all_gj[fg_mask_inboxes]
|
||||
all_gi = all_gi[fg_mask_inboxes]
|
||||
all_anch = all_anch[fg_mask_inboxes]
|
||||
|
||||
this_target = this_target[matched_gt_inds]
|
||||
|
||||
for i in range(nl):
|
||||
layer_idx = from_which_layer == i
|
||||
matching_bs[i].append(all_b[layer_idx])
|
||||
matching_as[i].append(all_a[layer_idx])
|
||||
matching_gjs[i].append(all_gj[layer_idx])
|
||||
matching_gis[i].append(all_gi[layer_idx])
|
||||
matching_targets[i].append(this_target[layer_idx])
|
||||
matching_anchs[i].append(all_anch[layer_idx])
|
||||
|
||||
for i in range(nl):
|
||||
matching_bs[i] = torch.cat(matching_bs[i], dim=0)
|
||||
matching_as[i] = torch.cat(matching_as[i], dim=0)
|
||||
matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
|
||||
matching_gis[i] = torch.cat(matching_gis[i], dim=0)
|
||||
matching_targets[i] = torch.cat(matching_targets[i], dim=0)
|
||||
matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
|
||||
|
||||
return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
|
||||
|
||||
def build_targets2(self, p, targets, imgs):
|
||||
|
||||
indices, anch = self.find_5_positive(p, targets)
|
||||
|
||||
matching_bs = [[] for pp in p]
|
||||
matching_as = [[] for pp in p]
|
||||
matching_gjs = [[] for pp in p]
|
||||
matching_gis = [[] for pp in p]
|
||||
matching_targets = [[] for pp in p]
|
||||
matching_anchs = [[] for pp in p]
|
||||
|
||||
nl = len(p)
|
||||
|
||||
for batch_idx in range(p[0].shape[0]):
|
||||
|
||||
b_idx = targets[:, 0]==batch_idx
|
||||
this_target = targets[b_idx]
|
||||
if this_target.shape[0] == 0:
|
||||
continue
|
||||
|
||||
txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
|
||||
txyxy = xywh2xyxy(txywh)
|
||||
|
||||
pxyxys = []
|
||||
p_cls = []
|
||||
p_obj = []
|
||||
from_which_layer = []
|
||||
all_b = []
|
||||
all_a = []
|
||||
all_gj = []
|
||||
all_gi = []
|
||||
all_anch = []
|
||||
|
||||
for i, pi in enumerate(p):
|
||||
|
||||
b, a, gj, gi = indices[i]
|
||||
idx = (b == batch_idx)
|
||||
b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
|
||||
all_b.append(b)
|
||||
all_a.append(a)
|
||||
all_gj.append(gj)
|
||||
all_gi.append(gi)
|
||||
all_anch.append(anch[i][idx])
|
||||
from_which_layer.append(torch.ones(size=(len(b),)) * i)
|
||||
|
||||
fg_pred = pi[b, a, gj, gi]
|
||||
p_obj.append(fg_pred[:, 4:5])
|
||||
p_cls.append(fg_pred[:, 5:])
|
||||
|
||||
grid = torch.stack([gi, gj], dim=1)
|
||||
pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
|
||||
#pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
|
||||
pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
|
||||
pxywh = torch.cat([pxy, pwh], dim=-1)
|
||||
pxyxy = xywh2xyxy(pxywh)
|
||||
pxyxys.append(pxyxy)
|
||||
|
||||
pxyxys = torch.cat(pxyxys, dim=0)
|
||||
if pxyxys.shape[0] == 0:
|
||||
continue
|
||||
p_obj = torch.cat(p_obj, dim=0)
|
||||
p_cls = torch.cat(p_cls, dim=0)
|
||||
from_which_layer = torch.cat(from_which_layer, dim=0)
|
||||
all_b = torch.cat(all_b, dim=0)
|
||||
all_a = torch.cat(all_a, dim=0)
|
||||
all_gj = torch.cat(all_gj, dim=0)
|
||||
all_gi = torch.cat(all_gi, dim=0)
|
||||
all_anch = torch.cat(all_anch, dim=0)
|
||||
|
||||
pair_wise_iou = box_iou(txyxy, pxyxys)
|
||||
|
||||
pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
|
||||
|
||||
top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
|
||||
dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
|
||||
|
||||
gt_cls_per_image = (
|
||||
F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
|
||||
.float()
|
||||
.unsqueeze(1)
|
||||
.repeat(1, pxyxys.shape[0], 1)
|
||||
)
|
||||
|
||||
num_gt = this_target.shape[0]
|
||||
cls_preds_ = (
|
||||
p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
||||
* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
||||
)
|
||||
|
||||
y = cls_preds_.sqrt_()
|
||||
pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
||||
torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
|
||||
).sum(-1)
|
||||
del cls_preds_
|
||||
|
||||
cost = (
|
||||
pair_wise_cls_loss
|
||||
+ 3.0 * pair_wise_iou_loss
|
||||
)
|
||||
|
||||
matching_matrix = torch.zeros_like(cost)
|
||||
|
||||
for gt_idx in range(num_gt):
|
||||
_, pos_idx = torch.topk(
|
||||
cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
|
||||
)
|
||||
matching_matrix[gt_idx][pos_idx] = 1.0
|
||||
|
||||
del top_k, dynamic_ks
|
||||
anchor_matching_gt = matching_matrix.sum(0)
|
||||
if (anchor_matching_gt > 1).sum() > 0:
|
||||
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
||||
matching_matrix[:, anchor_matching_gt > 1] *= 0.0
|
||||
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
|
||||
fg_mask_inboxes = matching_matrix.sum(0) > 0.0
|
||||
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
||||
|
||||
from_which_layer = from_which_layer[fg_mask_inboxes]
|
||||
all_b = all_b[fg_mask_inboxes]
|
||||
all_a = all_a[fg_mask_inboxes]
|
||||
all_gj = all_gj[fg_mask_inboxes]
|
||||
all_gi = all_gi[fg_mask_inboxes]
|
||||
all_anch = all_anch[fg_mask_inboxes]
|
||||
|
||||
this_target = this_target[matched_gt_inds]
|
||||
|
||||
for i in range(nl):
|
||||
layer_idx = from_which_layer == i
|
||||
matching_bs[i].append(all_b[layer_idx])
|
||||
matching_as[i].append(all_a[layer_idx])
|
||||
matching_gjs[i].append(all_gj[layer_idx])
|
||||
matching_gis[i].append(all_gi[layer_idx])
|
||||
matching_targets[i].append(this_target[layer_idx])
|
||||
matching_anchs[i].append(all_anch[layer_idx])
|
||||
|
||||
for i in range(nl):
|
||||
matching_bs[i] = torch.cat(matching_bs[i], dim=0)
|
||||
matching_as[i] = torch.cat(matching_as[i], dim=0)
|
||||
matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
|
||||
matching_gis[i] = torch.cat(matching_gis[i], dim=0)
|
||||
matching_targets[i] = torch.cat(matching_targets[i], dim=0)
|
||||
matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
|
||||
|
||||
return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
|
||||
|
||||
def find_5_positive(self, p, targets):
|
||||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
||||
indices, anch = [], []
|
||||
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||||
|
||||
g = 1.0 # bias
|
||||
off = torch.tensor([[0, 0],
|
||||
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||||
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||
], device=targets.device).float() * g # offsets
|
||||
|
||||
for i in range(self.nl):
|
||||
anchors = self.anchors[i]
|
||||
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||||
|
||||
# Match targets to anchors
|
||||
t = targets * gain
|
||||
if nt:
|
||||
# Matches
|
||||
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||||
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
||||
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||
t = t[j] # filter
|
||||
|
||||
# Offsets
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gxi = gain[[2, 3]] - gxy # inverse
|
||||
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||||
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||||
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||
t = t.repeat((5, 1, 1))[j]
|
||||
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||
else:
|
||||
t = targets[0]
|
||||
offsets = 0
|
||||
|
||||
# Define
|
||||
b, c = t[:, :2].long().T # image, class
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gwh = t[:, 4:6] # grid wh
|
||||
gij = (gxy - offsets).long()
|
||||
gi, gj = gij.T # grid xy indices
|
||||
|
||||
# Append
|
||||
a = t[:, 6].long() # anchor indices
|
||||
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||||
anch.append(anchors[a]) # anchors
|
||||
|
||||
return indices, anch
|
||||
|
||||
def find_3_positive(self, p, targets):
|
||||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
||||
indices, anch = [], []
|
||||
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||||
|
||||
g = 0.5 # bias
|
||||
off = torch.tensor([[0, 0],
|
||||
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||||
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||
], device=targets.device).float() * g # offsets
|
||||
|
||||
for i in range(self.nl):
|
||||
anchors = self.anchors[i]
|
||||
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||||
|
||||
# Match targets to anchors
|
||||
t = targets * gain
|
||||
if nt:
|
||||
# Matches
|
||||
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||||
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
||||
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||
t = t[j] # filter
|
||||
|
||||
# Offsets
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gxi = gain[[2, 3]] - gxy # inverse
|
||||
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||||
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||||
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||
t = t.repeat((5, 1, 1))[j]
|
||||
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||
else:
|
||||
t = targets[0]
|
||||
offsets = 0
|
||||
|
||||
# Define
|
||||
b, c = t[:, :2].long().T # image, class
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gwh = t[:, 4:6] # grid wh
|
||||
gij = (gxy - offsets).long()
|
||||
gi, gj = gij.T # grid xy indices
|
||||
|
||||
# Append
|
||||
a = t[:, 6].long() # anchor indices
|
||||
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||||
anch.append(anchors[a]) # anchors
|
||||
|
||||
return indices, anch
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user