greenhouse/export.py
Linaom1214 afdc86f519
End2end (#61)
* export end2end onnx model

* fixbug

* add web demo (#58)

* Update README.md

* main code

update yolov7-tiny deploy cfg

* main code

update yolov7-tiny training cfg

* main code

@liguagua752109150 https://github.com/WongKinYiu/yolov7/issues/33#issuecomment-1178669212

* main code

@albertfaromatics https://github.com/WongKinYiu/yolov7/issues/35#issuecomment-1178800685

* main code

update link

* main code

add custom hyp

* main code

update default activation function

* main code

update path

* main figure

add more tasks

* main code

update readme

* main code

update reparameterization

* Update README.md

* main code

update readme

* main code

update aux training

* main code

update aux training

* main code

update aux training

* main figure

update yolov7 prediction

* main code

update readme

* main code

rename

* main code

rename

* main code

rename

* main code

rename

* main code

update readme

* main code

update visualization

* main code

fix gain for train_aux

* main code

update loss

* main code

update instance segmentation demo

* main code

update keypoint detection demo

* main code

update pose demo

* main code

update pose

* main code

update pose

* main code

update pose

* main code

update pose

* main code

update trace

* Update README.md

* main code

fix ciou

* main code

fix nan of aux training https://github.com/WongKinYiu/yolov7/issues/250#issue-1312356380 @hudingding

* support onnx to tensorrt convert (#114)

* fuse IDetect (#148)

* Fixes #199 (#203)

* minor fix

* resolve conflict

* resolve conflict

* resolve conflict

* resolve conflict

* resolve conflict

* resolve

* resolve

* resolve

* resolve

Co-authored-by: AK391 <81195143+AK391@users.noreply.github.com>
Co-authored-by: Alexey <AlexeyAB@users.noreply.github.com>
Co-authored-by: Kin-Yiu, Wong <102582011@cc.ncu.edu.tw>
Co-authored-by: linghu8812 <36389436+linghu8812@users.noreply.github.com>
Co-authored-by: Alexander <84590713+SashaAlderson@users.noreply.github.com>
Co-authored-by: Ben Raymond <ben@theraymonds.org>
Co-authored-by: AlexeyAB84 <alexeyab84@gmail.com>
2022-07-22 16:24:13 +03:00

127 lines
5.2 KiB
Python

import argparse
import sys
import time
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
import models
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_device
from utils.add_nms import RegisterNMS
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
model = attempt_load(opt.weights, map_location=device) # load FP32 model
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
# elif isinstance(m, models.yolo.Detect):
# m.forward = m.forward_export # assign forward (optional)
model.model[-1].export = not opt.grid # set Detect() layer grid export
y = model(img) # dry run
if opt.include_nms:
model.model[-1].include_nms = True
y = None
# TorchScript export
try:
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
ts = torch.jit.trace(model, img, strict=False)
ts.save(f)
print('TorchScript export success, saved as %s' % f)
except Exception as e:
print('TorchScript export failure: %s' % e)
# ONNX export
try:
import onnx
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx') # filename
model.eval()
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
output_names=['classes', 'boxes'] if y is None else ['output'],
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
if opt.include_nms:
print('Registering NMS plugin...')
mo = RegisterNMS(f)
mo.register_nms()
mo.save(f)
else:
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
# # Metadata
# d = {'stride': int(max(model.stride))}
# for k, v in d.items():
# meta = onnx_model.metadata_props.add()
# meta.key, meta.value = k, str(v)
# onnx.save(onnx_model, f)
if opt.simplify:
try:
import onnxsim
print('\nStarting to simplify ONNX...')
onnx_model, check = onnxsim.simplify(onnx_model)
assert check, 'assert check failed'
except Exception as e:
print(f'Simplifier failure: {e}')
print('ONNX export success, saved as %s' % f)
except Exception as e:
print('ONNX export failure: %s' % e)
# CoreML export
try:
import coremltools as ct
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
# convert model from torchscript and apply pixel scaling as per detect.py
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print('CoreML export success, saved as %s' % f)
except Exception as e:
print('CoreML export failure: %s' % e)
# Finish
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))