Add 'darknet_ros2/' from commit 'be4fd04c0ea8fbed80b3549283701e16145422c6'

git-subtree-dir: darknet_ros2
git-subtree-mainline: f33742e6e8ae5b436aa1ce48d8c40cb5e5e5562e
git-subtree-split: be4fd04c0ea8fbed80b3549283701e16145422c6
This commit is contained in:
Apoorva Gupta 2023-03-10 18:40:03 +05:30
commit aa265edfb1
23 changed files with 1303 additions and 0 deletions

View File

@ -0,0 +1,75 @@
cmake_minimum_required(VERSION 3.10)
project(openrobotics_darknet_ros)
# Default to C++14
if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)
endif()
if(NOT WIN32)
add_compile_options(-Wall -Wextra -Wpedantic)
endif()
find_package(ament_cmake REQUIRED)
find_package(cv_bridge REQUIRED)
find_package(darknet_vendor REQUIRED)
find_package(rclcpp REQUIRED)
find_package(rclcpp_components REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(vision_msgs REQUIRED)
add_library(openrobotics_darknet_ros SHARED
src/detector_network.cpp
src/parse.cpp)
target_include_directories(openrobotics_darknet_ros PUBLIC include)
target_compile_definitions(openrobotics_darknet_ros PRIVATE "DARKNET_ROS_BUILDING_DLL")
ament_target_dependencies(openrobotics_darknet_ros
cv_bridge
darknet_vendor
sensor_msgs
vision_msgs)
add_library(detector_node SHARED
src/detector_node.cpp)
target_compile_definitions(detector_node PRIVATE "DARKNET_ROS_NODE_BUILDING_DLL")
ament_target_dependencies(detector_node PUBLIC
"rclcpp"
"rclcpp_components")
target_link_libraries(detector_node PUBLIC openrobotics_darknet_ros)
rclcpp_components_register_nodes(detector_node "openrobotics::darknet_ros::DetectorNode")
add_executable(detector_node_main
src/detector_node_main.cpp)
target_link_libraries(detector_node_main detector_node)
set_target_properties(detector_node_main PROPERTIES OUTPUT_NAME "detector_node")
if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()
ament_add_gtest(test_parser test/test_parser.cpp
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/test/")
target_link_libraries(test_parser openrobotics_darknet_ros)
ament_add_gtest(test_detector_network test/test_detector_network.cpp)
target_link_libraries(test_detector_network openrobotics_darknet_ros)
endif()
ament_export_libraries(openrobotics_darknet_ros)
install(TARGETS openrobotics_darknet_ros
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin)
install(TARGETS detector_node
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin)
install(TARGETS detector_node_main
DESTINATION lib/${PROJECT_NAME})
install(DIRECTORY include/ DESTINATION include)
ament_package()

View File

@ -0,0 +1,18 @@
Any contribution that you make to this repository will
be under the Apache 2 License, as dictated by that
[license](http://www.apache.org/licenses/LICENSE-2.0.html):
~~~
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
~~~
Contributors must sign-off each commit by adding a `Signed-off-by: ...`
line to commit messages to certify that they have the right to submit
the code they are contributing to the project according to the
[Developer Certificate of Origin (DCO)](https://developercertificate.org/).

202
darknet_ros2/LICENSE Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

58
darknet_ros2/README.md Normal file
View File

@ -0,0 +1,58 @@
# Open Robotics Darknet ROS
This is a ROS 2 wrapper around [darknet](https://pjreddie.com/darknet), an open source neural network framework.
![Example image with bounding boxes created using darknet and the yolov3-tiny network](doc/example_darknet_yolov3-tiny.png)
## DetectorNode
This node can run object detectors like [YOLOv3](https://pjreddie.com/darknet/yolo/) on images.
### Subscribers
* `~/images` (type `sensor_msgs/msg/Image`) - Input mages to feed to the detector
### Publishers
* `~/detections` (type `vision_msgs/msg/Detection2DArray`) - Objects detected in an image (if any)
### Parameters
* `network.config` - a path to a file describing a darknet detector network
* `network.weights` - a path to a file with weights for the given network
* `network.class_names` - a path to a file with names of classes the network can detect (1 per line)
* `detection.threshold` - Minimum probability of a detection to be published
* `detection.nms_threshold` - Non-maximal Suppression threshold - controls filtering of overlapping boxes
### Example
Download `YOLOv3-tiny`.
```
wget https://raw.githubusercontent.com/pjreddie/darknet/f86901f6177dfc6116360a13cc06ab680e0c86b0/cfg/yolov3-tiny.cfg
wget https://pjreddie.com/media/files/yolov3-tiny.weights
wget https://raw.githubusercontent.com/pjreddie/darknet/c6afc7ff1499fbbe64069e1843d7929bd7ae2eaa/data/coco.names
```
Save the following as `detector_node_params.yaml`
```yaml
/**:
ros__parameters:
network:
config: "./yolov3-tiny.cfg"
weights: "./yolov3-tiny.weights"
class_names: "./coco.names"
detection:
threshold: 0.25
nms_threshold: 0.45
```
Then run the node.
```
ros2 run openrobotics_darknet_ros detector_node __params:=detector_node_params.yaml
```
The node is now running.
Publish images on `~/images` to get the node to detect objects.

Binary file not shown.

After

Width:  |  Height:  |  Size: 757 KiB

View File

@ -0,0 +1,71 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OPENROBOTICS_DARKNET_ROS__DETECTOR_NETWORK_HPP_
#define OPENROBOTICS_DARKNET_ROS__DETECTOR_NETWORK_HPP_
#include <memory>
#include <string>
#include <vector>
#include "openrobotics_darknet_ros/visibility.hpp"
#include "sensor_msgs/msg/image.hpp"
#include "vision_msgs/msg/detection2_d_array.hpp"
namespace openrobotics
{
namespace darknet_ros
{
// Forward declaration
class DetectorNetworkPrivate;
class DetectorNetwork
{
public:
/// \brief load a network from disk
/// \param[in] config_file Path to a file describing the network
/// \param[in] weights_file Path to a file containing the network's weights
/// \param[in] classes Ordered list of class names the network can predict
DARKNET_ROS_PUBLIC
DetectorNetwork(
const std::string & config_file,
const std::string & weights_file,
const std::vector<std::string> & classes);
DARKNET_ROS_PUBLIC
~DetectorNetwork();
/// \brief Detect objects in image
/// \param[in] image An image to analyze
/// \param[in] threshold How confident the network must be to detect something [0.0, 1.0]
/// \param[in] nms_threshold Non-Maximal Suppression threhsold [0.0, 1.0].
/// When the intersection over union (iou) of two bounding boxes is greater than nms_threshold,
/// the box with the lower objectness score is discarded.
/// \param[out] output_detections Things detected in the image (does not set source_img)
/// \return number of objects detected
DARKNET_ROS_PUBLIC
size_t
detect(
const sensor_msgs::msg::Image & image,
double threshold,
double nms_threshold,
vision_msgs::msg::Detection2DArray * output_detections);
private:
std::unique_ptr<DetectorNetworkPrivate> impl_;
};
} // namespace darknet_ros
} // namespace openrobotics
#endif // OPENROBOTICS_DARKNET_ROS__DETECTOR_NETWORK_HPP_

View File

@ -0,0 +1,48 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OPENROBOTICS_DARKNET_ROS__DETECTOR_NODE_HPP_
#define OPENROBOTICS_DARKNET_ROS__DETECTOR_NODE_HPP_
#include <memory>
#include <string>
#include "rclcpp/node.hpp"
#include "openrobotics_darknet_ros/visibility_node.hpp"
namespace openrobotics
{
namespace darknet_ros
{
// Forward declaration
class DetectorNodePrivate;
class DetectorNode : public rclcpp::Node
{
public:
/// \brief Create a node that uses ROS parameters to get the network
DARKNET_ROS_NODE_PUBLIC
explicit DetectorNode(rclcpp::NodeOptions options);
DARKNET_ROS_NODE_PUBLIC
virtual ~DetectorNode();
private:
std::unique_ptr<DetectorNodePrivate> impl_;
};
} // namespace darknet_ros
} // namespace openrobotics
#endif // OPENROBOTICS_DARKNET_ROS__DETECTOR_NODE_HPP_

View File

@ -0,0 +1,36 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OPENROBOTICS_DARKNET_ROS__PARSE_HPP_
#define OPENROBOTICS_DARKNET_ROS__PARSE_HPP_
#include <string>
#include <vector>
#include "openrobotics_darknet_ros/visibility.hpp"
namespace openrobotics
{
namespace darknet_ros
{
/// \brief Read file containing class names, one per line
/// \param[in] filename a path to a file containing classes a network can detect
/// \return a container with all of the class names detected
DARKNET_ROS_PUBLIC
std::vector<std::string>
parse_class_names(const std::string & filename);
} // namespace darknet_ros
} // namespace openrobotics
#endif // OPENROBOTICS_DARKNET_ROS__PARSE_HPP_

View File

@ -0,0 +1,56 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/* This header must be included by all rclcpp headers which declare symbols
* which are defined in the rclcpp library. When not building the rclcpp
* library, i.e. when using the headers in other package's code, the contents
* of this header change the visibility of certain symbols which the rclcpp
* library cannot have, but the consuming code must have inorder to link.
*/
#ifndef OPENROBOTICS_DARKNET_ROS__VISIBILITY_HPP_
#define OPENROBOTICS_DARKNET_ROS__VISIBILITY_HPP_
// This logic was borrowed (then namespaced) from the examples on the gcc wiki:
// https://gcc.gnu.org/wiki/Visibility
#if defined _WIN32 || defined __CYGWIN__
#ifdef __GNUC__
#define DARKNET_ROS_EXPORT __attribute__ ((dllexport))
#define DARKNET_ROS_IMPORT __attribute__ ((dllimport))
#else
#define DARKNET_ROS_EXPORT __declspec(dllexport)
#define DARKNET_ROS_IMPORT __declspec(dllimport)
#endif
#ifdef DARKNET_ROS_BUILDING_LIBRARY
#define DARKNET_ROS_PUBLIC DARKNET_ROS_EXPORT
#else
#define DARKNET_ROS_PUBLIC DARKNET_ROS_IMPORT
#endif
#define DARKNET_ROS_PUBLIC_TYPE DARKNET_ROS_PUBLIC
#define DARKNET_ROS_LOCAL
#else
#define DARKNET_ROS_EXPORT __attribute__ ((visibility("default")))
#define DARKNET_ROS_IMPORT
#if __GNUC__ >= 4
#define DARKNET_ROS_PUBLIC __attribute__ ((visibility("default")))
#define DARKNET_ROS_LOCAL __attribute__ ((visibility("hidden")))
#else
#define DARKNET_ROS_PUBLIC
#define DARKNET_ROS_LOCAL
#endif
#define DARKNET_ROS_PUBLIC_TYPE
#endif
#endif // OPENROBOTICS_DARKNET_ROS__VISIBILITY_HPP_

View File

@ -0,0 +1,56 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/* This header must be included by all rclcpp headers which declare symbols
* which are defined in the rclcpp library. When not building the rclcpp
* library, i.e. when using the headers in other package's code, the contents
* of this header change the visibility of certain symbols which the rclcpp
* library cannot have, but the consuming code must have inorder to link.
*/
#ifndef OPENROBOTICS_DARKNET_ROS__VISIBILITY_NODE_HPP_
#define OPENROBOTICS_DARKNET_ROS__VISIBILITY_NODE_HPP_
// This logic was borrowed (then namespaced) from the examples on the gcc wiki:
// https://gcc.gnu.org/wiki/Visibility
#if defined _WIN32 || defined __CYGWIN__
#ifdef __GNUC__
#define DARKNET_ROS_NODE_EXPORT __attribute__ ((dllexport))
#define DARKNET_ROS_NODE_IMPORT __attribute__ ((dllimport))
#else
#define DARKNET_ROS_NODE_EXPORT __declspec(dllexport)
#define DARKNET_ROS_NODE_IMPORT __declspec(dllimport)
#endif
#ifdef DARKNET_ROS_NODE_BUILDING_LIBRARY
#define DARKNET_ROS_NODE_PUBLIC DARKNET_ROS_NODE_EXPORT
#else
#define DARKNET_ROS_NODE_PUBLIC DARKNET_ROS_NODE_IMPORT
#endif
#define DARKNET_ROS_NODE_PUBLIC_TYPE DARKNET_ROS_NODE_PUBLIC
#define DARKNET_ROS_NODE_LOCAL
#else
#define DARKNET_ROS_NODE_EXPORT __attribute__ ((visibility("default")))
#define DARKNET_ROS_NODE_IMPORT
#if __GNUC__ >= 4
#define DARKNET_ROS_NODE_PUBLIC __attribute__ ((visibility("default")))
#define DARKNET_ROS_NODE_LOCAL __attribute__ ((visibility("hidden")))
#else
#define DARKNET_ROS_NODE_PUBLIC
#define DARKNET_ROS_NODE_LOCAL
#endif
#define DARKNET_ROS_NODE_PUBLIC_TYPE
#endif
#endif // OPENROBOTICS_DARKNET_ROS__VISIBILITY_NODE_HPP_

29
darknet_ros2/package.xml Normal file
View File

@ -0,0 +1,29 @@
<?xml version="1.0"?>
<package format="2">
<name>openrobotics_darknet_ros</name>
<version>0.1.0</version>
<description>ROS wrapper around darknet, an open source neural network framework.</description>
<author email="sloretz@openrobotics.org">Shane Loretz</author>
<maintainer email="sloretz@openrobotics.org">Shane Loretz</maintainer>
<license>Apache License 2.0</license>
<buildtool_depend>ament_cmake</buildtool_depend>
<depend>cv_bridge</depend>
<depend>darknet_vendor</depend>
<depend>rclcpp</depend>
<depend>rclcpp_components</depend>
<depend>sensor_msgs</depend>
<depend>vision_msgs</depend>
<test_depend>ament_cmake_gtest</test_depend>
<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
<export>
<build_type>ament_cmake</build_type>
</export>
</package>

View File

@ -0,0 +1,44 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef DARKNET_DETECTIONS_HPP_
#define DARKNET_DETECTIONS_HPP_
#include <darknet_vendor/darknet_vendor.h>
namespace openrobotics
{
namespace darknet_ros
{
/// \brief RAII wrapper around darknet type `detections`
class DarknetDetections
{
public:
/// \brief Steal ownership of detections
DarknetDetections(detection * darknet_detections, size_t num_detections)
: detections_(darknet_detections), num_detections_(num_detections)
{
}
~DarknetDetections()
{
free_detections(detections_, num_detections_);
}
detection * detections_;
const size_t num_detections_ = 0;
};
} // namespace darknet_ros
} // namespace openrobotics
#endif // DARKNET_DETECTIONS_HPP_

View File

@ -0,0 +1,71 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DARKNET_IMAGE_HPP_
#define DARKNET_IMAGE_HPP_
#include <darknet_vendor/darknet_vendor.h>
#include <cv_bridge/cv_bridge.h>
#include <memory>
namespace openrobotics
{
namespace darknet_ros
{
/// \brief RAII wrapper around darknet type `image`
class DarknetImage
{
public:
/// \brief Steal ownership of image
explicit DarknetImage(image darknet_image)
: image_(darknet_image)
{
}
explicit DarknetImage(const sensor_msgs::msg::Image & image_msg)
{
// Convert to open cv type with a known format
std::shared_ptr<void const> dummy_object;
cv_bridge::CvImageConstPtr opencv_image = cv_bridge::toCvShare(image_msg, dummy_object, "rgb8");
const cv::Mat & image_matrix = opencv_image->image;
// Make a darknet image with this data
const int width = image_matrix.cols;
const int height = image_matrix.rows;
const int channels = 3; // rgb
image_ = make_image(width, height, channels);
for (int channel = 0; channel < channels; ++channel) {
for (int row = 0; row < image_matrix.rows; ++row) {
for (int column = 0; column < image_matrix.cols; ++column) {
// Darknet stores each channel separately in R G B order
// Within a channel pixels are in row-major order
size_t darknet_idx = channel * height * width + row * width + column;
image_.data[darknet_idx] = image_matrix.ptr(row, column)[channel] / 255.0f;
}
}
}
}
~DarknetImage()
{
free_image(image_);
}
image image_;
};
} // namespace darknet_ros
} // namespace openrobotics
#endif // DARKNET_IMAGE_HPP_

View File

@ -0,0 +1,176 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <darknet_vendor/darknet_vendor.h>
#include <fstream>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "darknet_detections.hpp"
#include "darknet_image.hpp"
#include "openrobotics_darknet_ros/detector_network.hpp"
namespace openrobotics
{
namespace darknet_ros
{
class DetectorNetworkPrivate
{
public:
DetectorNetworkPrivate() {}
~DetectorNetworkPrivate()
{
if (network_) {
free_network(network_);
network_ = nullptr;
}
}
// darknet network
network * network_ = nullptr;
// Classes the network can detect
std::vector<std::string> class_names_;
};
DetectorNetwork::DetectorNetwork(
const std::string & config_file,
const std::string & weights_file,
const std::vector<std::string> & classes)
: impl_(new DetectorNetworkPrivate())
{
if (!std::ifstream(config_file)) {
std::stringstream str;
str << "Could not open " << config_file;
throw std::invalid_argument(str.str());
} else if (!std::ifstream(weights_file)) {
std::stringstream str;
str << "Could not open " << weights_file;
throw std::invalid_argument(str.str());
}
impl_->class_names_ = classes;
// Make copies because of darknet's lack of const
std::unique_ptr<char> config_mutable(new char[config_file.size() + 1]);
std::unique_ptr<char> weights_mutable(new char[weights_file.size() + 1]);
snprintf(&*config_mutable, config_file.size() + 1, "%s", config_file.c_str());
snprintf(&*weights_mutable, weights_file.size() + 1, "%s", weights_file.c_str());
const int clear = 0;
impl_->network_ = load_network(&*config_mutable, &*weights_mutable, clear);
if (nullptr == impl_->network_) {
std::stringstream str;
str << "Failed to load network from " << config_file << " and " << weights_file;
throw std::invalid_argument(str.str());
}
// TODO(sloretz) what is this and why do examples set it?
const int batch = 1;
set_batch_network(impl_->network_, batch);
const int num_classes_int = impl_->network_->layers[impl_->network_->n - 1].classes;
if (num_classes_int <= 0) {
throw std::invalid_argument("Invalid network, it expects no classes");
}
size_t num_classes = static_cast<size_t>(num_classes_int);
if (num_classes != classes.size()) {
std::stringstream str;
str << "DetectorNetwork expects " << num_classes << " class names but got " << classes.size();
throw std::invalid_argument(str.str());
}
}
DetectorNetwork::~DetectorNetwork()
{
}
size_t
DetectorNetwork::detect(
const sensor_msgs::msg::Image & image_msg,
double threshold,
double nms_threshold,
vision_msgs::msg::Detection2DArray * output_detections)
{
DarknetImage orig_image(image_msg);
// resize image to network size, filling rest with gray
DarknetImage resized_image(
letterbox_image(orig_image.image_, impl_->network_->w, impl_->network_->h));
// Ask network to make predictions
network_predict(impl_->network_, resized_image.image_.data);
// Get predictions from network
int num_detections = 0;
// TODO(sloretz) what do hier, map, and relative do?
const float hier = 0;
int * map = nullptr;
const int relative = 0;
detection * darknet_detections = get_network_boxes(
impl_->network_, image_msg.width, image_msg.height, threshold,
hier, map, relative,
&num_detections);
if (num_detections <= 0) {
return 0;
}
DarknetDetections raii_detections(darknet_detections, static_cast<size_t>(num_detections));
// Non-maximal suppression: filters overlapping bounding boxes
if (nms_threshold > 0.0f) {
const int num_classes = impl_->network_->layers[impl_->network_->n - 1].classes;
do_nms_sort(darknet_detections, num_detections, num_classes, nms_threshold);
}
// Populate output message
output_detections->header = image_msg.header;
output_detections->detections.reserve(num_detections);
for (int i = 0; i < num_detections; ++i) {
auto & detection = darknet_detections[i];
output_detections->detections.emplace_back();
auto & detection_ros = output_detections->detections.back();
// Copy probabilities of each class
for (int cls = 0; cls < detection.classes; ++cls) {
if (detection.prob[cls] > 0.0f) {
detection_ros.results.emplace_back();
auto & hypothesis = detection_ros.results.back();
hypothesis.id = impl_->class_names_.at(cls);
hypothesis.score = detection.prob[cls];
}
}
if (detection_ros.results.empty()) {
// nms suppressed this detection
output_detections->detections.pop_back();
continue;
}
// Copy bounding box, darknet uses center of bounding box too
detection_ros.bbox.center.x = detection.bbox.x;
detection_ros.bbox.center.y = detection.bbox.y;
detection_ros.bbox.size_x = detection.bbox.w;
detection_ros.bbox.size_y = detection.bbox.h;
}
// Not using num_detections because nms may have suppressed some
return output_detections->detections.size();
}
} // namespace darknet_ros
} // namespace openrobotics

View File

@ -0,0 +1,165 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <darknet_vendor/darknet_vendor.h>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "openrobotics_darknet_ros/detector_node.hpp"
#include "openrobotics_darknet_ros/detector_network.hpp"
#include "openrobotics_darknet_ros/parse.hpp"
#include "rcl_interfaces/msg/parameter_descriptor.hpp"
#include "rclcpp/parameter_value.hpp"
namespace openrobotics
{
namespace darknet_ros
{
class DetectorNodePrivate
{
public:
void on_image_rx(const sensor_msgs::msg::Image::ConstSharedPtr image_msg)
{
vision_msgs::msg::Detection2DArray::UniquePtr detections(
new vision_msgs::msg::Detection2DArray);
// std::cerr << "using threshold " << threshold_ << " nms " << nms_threshold_ << "\n";
if (network_->detect(*image_msg, threshold_, nms_threshold_, &*detections)) {
detections_pub_->publish(std::move(detections));
}
}
rcl_interfaces::msg::SetParametersResult
on_parameters_change(const std::vector<rclcpp::Parameter> & new_values)
{
rcl_interfaces::msg::SetParametersResult result;
result.successful = true;
double new_threshold = threshold_;
double new_nms_threshold = nms_threshold_;
for (const auto & parameter : new_values) {
if (threshold_desc_.name == parameter.get_name()) {
new_threshold = parameter.as_double();
// TODO(sloretz) range constraints in parameter description
if (new_threshold < 0.0 || new_threshold > 1.0) {
result.successful = false;
result.reason = "threshold out of range [0.0, 1.0]";
}
} else if (nms_threshold_desc_.name == parameter.get_name()) {
new_nms_threshold = parameter.as_double();
if (new_nms_threshold < 0.0 || new_nms_threshold > 1.0) {
result.successful = false;
result.reason = "nms_threshold out of range [0.0, 1.0]";
}
}
}
if (result.successful) {
threshold_ = new_threshold;
nms_threshold_ = new_nms_threshold;
// std::cerr << "New threshold " << threshold_ << " nms " << nms_threshold_ << "\n";
}
return result;
}
std::unique_ptr<DetectorNetwork> network_;
rclcpp::Publisher<vision_msgs::msg::Detection2DArray>::SharedPtr detections_pub_;
rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr image_sub_;
double threshold_ = 0.25;
double nms_threshold_ = 0.45;
rcl_interfaces::msg::ParameterDescriptor threshold_desc_;
rcl_interfaces::msg::ParameterDescriptor nms_threshold_desc_;
};
DetectorNode::DetectorNode(rclcpp::NodeOptions options)
: rclcpp::Node("detector_node", options), impl_(new DetectorNodePrivate)
{
// Read-only input parameters: cfg, weights, classes
rcl_interfaces::msg::ParameterDescriptor network_cfg_desc;
network_cfg_desc.description = "Path to config file describing network";
network_cfg_desc.type = rcl_interfaces::msg::ParameterType::PARAMETER_STRING;
network_cfg_desc.read_only = true;
network_cfg_desc.name = "network.config";
const std::string network_config_path = declare_parameter(
network_cfg_desc.name,
rclcpp::ParameterValue(),
network_cfg_desc).get<std::string>();
rcl_interfaces::msg::ParameterDescriptor network_weights_desc;
network_weights_desc.description = "Path to file describing network weights";
network_weights_desc.type = rcl_interfaces::msg::ParameterType::PARAMETER_STRING;
network_weights_desc.read_only = true;
network_weights_desc.name = "network.weights";
const std::string network_weights_path = declare_parameter(
network_weights_desc.name,
rclcpp::ParameterValue(),
network_weights_desc).get<std::string>();
rcl_interfaces::msg::ParameterDescriptor network_class_names_desc;
network_class_names_desc.description = "Path to file with class names (one per line)";
network_class_names_desc.type = rcl_interfaces::msg::ParameterType::PARAMETER_STRING;
network_class_names_desc.read_only = true;
network_class_names_desc.name = "network.class_names";
const std::string network_class_names_path = declare_parameter(
network_class_names_desc.name,
rclcpp::ParameterValue(),
network_class_names_desc).get<std::string>();
impl_->threshold_desc_.description = "Minimum detection confidence [0.0, 1.0]";
impl_->threshold_desc_.type = rcl_interfaces::msg::ParameterType::PARAMETER_DOUBLE;
impl_->threshold_desc_.name = "detection.threshold";
impl_->threshold_ = declare_parameter(
impl_->threshold_desc_.name,
rclcpp::ParameterValue(impl_->threshold_),
impl_->threshold_desc_).get<double>();
impl_->nms_threshold_desc_.description =
"Non Maximal Suppression threshold for filtering overlapping boxes [0.0, 1.0]";
impl_->nms_threshold_desc_.type = rcl_interfaces::msg::ParameterType::PARAMETER_DOUBLE;
impl_->nms_threshold_desc_.name = "detection.nms_threshold";
impl_->nms_threshold_ = declare_parameter(
impl_->nms_threshold_desc_.name,
rclcpp::ParameterValue(impl_->nms_threshold_),
impl_->nms_threshold_desc_).get<double>();
set_on_parameters_set_callback(
std::bind(&DetectorNodePrivate::on_parameters_change, &*impl_, std::placeholders::_1));
// TODO(sloretz) raise if user tried to initialize node with undeclared parameters
std::vector<std::string> class_names = parse_class_names(network_class_names_path);
impl_->network_.reset(
new DetectorNetwork(network_config_path, network_weights_path, class_names));
// Ouput topic ~/detections [vision_msgs/msg/Detection2DArray]
impl_->detections_pub_ = this->create_publisher<vision_msgs::msg::Detection2DArray>(
"~/detections", 1);
// Input topic ~/images [sensor_msgs/msg/Image]
impl_->image_sub_ = this->create_subscription<sensor_msgs::msg::Image>(
"~/images", 12, std::bind(&DetectorNodePrivate::on_image_rx, &*impl_, std::placeholders::_1));
}
DetectorNode::~DetectorNode()
{
}
} // namespace darknet_ros
} // namespace openrobotics
#include "rclcpp_components/register_node_macro.hpp"
RCLCPP_COMPONENTS_REGISTER_NODE(openrobotics::darknet_ros::DetectorNode)

View File

@ -0,0 +1,31 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "openrobotics_darknet_ros/detector_node.hpp"
#include "rclcpp/rclcpp.hpp"
int main(int argc, char ** argv)
{
rclcpp::init(argc, argv);
rclcpp::NodeOptions options;
auto detector_node = std::make_shared<openrobotics::darknet_ros::DetectorNode>(options);
rclcpp::spin(detector_node);
rclcpp::shutdown();
return 0;
}

View File

@ -0,0 +1,51 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
#include "openrobotics_darknet_ros/parse.hpp"
namespace openrobotics
{
namespace darknet_ros
{
std::vector<std::string>
parse_class_names(const std::string & filename)
{
std::ifstream fin(filename);
std::vector<std::string> class_names;
std::string line;
while (fin) {
std::getline(fin, line);
if (!fin) {
if (!fin.eof()) {
std::stringstream str;
str << "Failed to read [" << filename << "] line " << class_names.size();
throw std::runtime_error(str.str());
}
break;
}
if (line.empty()) {
// Ignore blank lines
continue;
}
class_names.emplace_back(line);
}
return class_names;
}
} // namespace darknet_ros
} // namespace openrobotics

View File

View File

@ -0,0 +1 @@
tomato

View File

@ -0,0 +1,10 @@
foo
bar
baz

View File

@ -0,0 +1,5 @@
car
boat
bus
airplane
space ship

View File

@ -0,0 +1,33 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "openrobotics_darknet_ros/detector_network.hpp"
TEST(network, config_does_not_exist)
{
const std::string config = "does_not_exist.cfg";
const std::string weights = "does_not_exist.weights";
std::vector<std::string> classes{"foo", "bar"};
try {
openrobotics::darknet_ros::DetectorNetwork network(config, weights, classes);
ASSERT_TRUE(false);
} catch (const std::invalid_argument &) {
}
}

View File

@ -0,0 +1,67 @@
// Copyright 2019 Open Source Robotics Foundation, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "openrobotics_darknet_ros/parse.hpp"
using openrobotics::darknet_ros::parse_class_names;
TEST(parse, names_file_does_not_exist)
{
std::vector<std::string> class_names;
class_names = parse_class_names("openrobotics_darknet_ros_file_does_not_exist");
ASSERT_EQ(0u, class_names.size());
}
TEST(parse, one_name)
{
std::vector<std::string> class_names;
class_names = parse_class_names("data/1_class_name.txt");
ASSERT_EQ(1u, class_names.size());
EXPECT_EQ("tomato", class_names[0]);
}
TEST(parse, 3_class_names_with_whitespace)
{
std::vector<std::string> class_names;
class_names = parse_class_names("data/3_class_names_with_whitespace.txt");
ASSERT_EQ(3u, class_names.size());
EXPECT_EQ("foo", class_names[0]);
EXPECT_EQ("bar", class_names[1]);
EXPECT_EQ("baz", class_names[2]);
}
TEST(parse, five_names)
{
std::vector<std::string> class_names;
class_names = parse_class_names("data/5_class_names.txt");
ASSERT_EQ(5u, class_names.size());
EXPECT_EQ("car", class_names[0]);
EXPECT_EQ("boat", class_names[1]);
EXPECT_EQ("bus", class_names[2]);
EXPECT_EQ("airplane", class_names[3]);
EXPECT_EQ("space ship", class_names[4]);
}